首页 | 本学科首页   官方微博 | 高级检索  
     

森林背景下基于自适应区域生长法的烟雾检测
引用本文:张炜程,李佩,高陈强. 森林背景下基于自适应区域生长法的烟雾检测[J]. 重庆邮电大学学报(自然科学版), 2016, 28(1): 100-106. DOI: 10.3979/j.issn.1673-825X.2016.01.015
作者姓名:张炜程  李佩  高陈强
作者单位:重庆邮电大学 信号与信息处理重庆市重点实验室,重庆,400065
基金项目:国家自然科学基金(61102131);重庆市科委自然科学基金(cstc2014jcyjA40048);重庆邮电大学文峰创业基金(WF201404)
摘    要:森林背景下,有效的烟雾检测在避免大规模森林火灾方面具有极其重要的意义。当前的研究对烟雾移动得很慢或没有清晰背景的情况下往往表现较差的性能,提出一种针对烟雾检测的自适应区域生长法。采用改进的卡尔曼滤波检测出运动区域,假设烟雾的亮度与视频照度之间存在线性关系,采用支持向量机(support vector ma-chine,SVM)线性回归方法得到烟雾亮度的近似范围,并定义亮度约束,基于检测得到的运动区域,同时考虑亮度约束和纹理约束,蔓延出烟雾区域的主要部分,提取基于区域的特征来做 SVM分类。对比实验结果表明,该方法优于传统的方法,并具有更强的鲁棒性。

关 键 词:烟雾检测  自适应区域生长法  亮度约束  支持向量机
收稿时间:2014-11-17
修稿时间:2015-10-30

Smoke detection based on adaptive region growing method in forest background
ZHANG Weicheng,LI Pei and GAO Chenqiang. Smoke detection based on adaptive region growing method in forest background[J]. Journal of Chongqing University of Posts and Telecommunications, 2016, 28(1): 100-106. DOI: 10.3979/j.issn.1673-825X.2016.01.015
Authors:ZHANG Weicheng  LI Pei  GAO Chenqiang
Affiliation:Chongqing Key Laboratory of Signal and Information Processing,Chongqing University of Postsand Telecommunications,Chongqing 400065,P.R.China,Chongqing Key Laboratory of Signal and Information Processing,Chongqing University of Postsand Telecommunications,Chongqing 400065,P.R.China and Chongqing Key Laboratory of Signal and Information Processing,Chongqing University of Postsand Telecommunications,Chongqing 400065,P.R.China
Abstract:An effective smoke detection is very important to avoid large-scale forest fire in forest background.The current study has poor performance in the following situations where the smoke is moving very slow or there is no clear background.In order to solve the se problems,a specific smoke detection with adaptive region growing method is proposed.Firstly,we use the improved Kelman filtering to detect the motion region.Secondly,the contact between smoke brightness and intensity of illumination is assumed as a linear relation,and we use SVM as a linear regression to obtain the approximate range of smoke brightness,and define this as a luminance constraint.Then we can spread out the main part of smoke region by considering the combination of luminance constraint and texture constraint based on detected motion region.Finally,some features based region has been extracted for SVM classification.Experimental results show our method outperforms the conventional methods,and have more robustness.
Keywords:smoke detection  adaptive region growing method  luminance constraint  support vector machine
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号