摘 要: | 针对敌士兵数据集样本较少的问题,提出一种基于YOLOv3的少样本深度学习目标检测方法.利用数据增广提高少样本目标检测模型的鲁棒性,改进网络结构将浅层网络特征图跨层连接至深层网络,采用k-means聚类获取适合士兵目标特性的锚点框,利用预训练提高模型训练收敛速度.实验结果表明,本文方法对少样本敌士兵目标检测成功率mAP达到85.6%、检测精度IOU达到82.18%,且对小型和遮挡目标检测效果较好;部署在NVIDIA TITAN V GPU计算机和NVIDIA Xavier嵌入式计算平台上的检测速度分别达到54.6和26.8 fps,实时性好.
|