首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机森林算法的航空高光谱数据分类方法研究
作者姓名:王书民
作者单位:中国地震局地震预测研究所
摘    要:高光谱数据具有光谱范围广,光谱分辨率高等优势,可以用于不同地物的分类识别,为近年来遥感领域的研究热点。采用随机森林算法对机载高光谱数据进行了地物分类识别研究,首先选取不同种类的地物样本,并对每类样本打上类别标签,每个像素包含的波段数即为样本的特征数,送入随机森林分类器进行训练;然后将训练好的分类器对待分类的高光谱影像数据进行分类,待分类的数据初始化为统一的类别标签;并根据袋外数据自变量的扰动对分类精度的影响,计算不同波段特征对分类效果的重要性系数。实验采用C++语言结合Intel Open CV计算机视觉库,编写了高光谱影像分类识别程序,对机载AISA高光谱传感器获取的甘肃省张掖市农村与城市影像数据进行分类,结果表明本文算法具有较高分类精度和可靠性。

关 键 词:高光谱遥感  随机森林  特征选择  
收稿时间:2016-03-22
修稿时间:2016-03-22
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号