首页 | 本学科首页   官方微博 | 高级检索  
     

基于差分演化的改进多目标粒子群优化算法
引用本文:吴亚丽,徐丽青. 基于差分演化的改进多目标粒子群优化算法[J]. 系统仿真学报, 2011, 23(10): 2211-2215
作者姓名:吴亚丽  徐丽青
作者单位:1. 西安理工大学自动化与信息工程学院,西安,710048
2. 中国电南京自动化股份有限公司,南京,211100
基金项目:陕西省自然科学基金(2010JQ8006); 陕西省教育厅科学研究专项(2010JK711)
摘    要:
提出一种基于差分演化的改进多目标粒子群优化算法来求解多目标优化问题。算法通过对Pareto最优解集的差分演化来增加Pareto解集的多样挫;通过循环拥挤距离采控制归档集中非劣解的分布.提高对种群空间的均匀采样;采用一种新的多目标适应值轮盘睹法选择粒子的全局最优位置,使其更逼近Pareto最优前沿;自适应惯性权重和加速度...

关 键 词:多目标优化  差分演化  粒子群优化算法  循环拥挤排序

Improved Multi-objective Particle Swarm Optimization Based on Differential Evolution
WU Ya-li,XU Li-qing. Improved Multi-objective Particle Swarm Optimization Based on Differential Evolution[J]. Journal of System Simulation, 2011, 23(10): 2211-2215
Authors:WU Ya-li  XU Li-qing
Affiliation:WU Ya-li1,XU Li-qing2(1.Automation and Information Engineering School,Xi'an University of Technology,Xi'an 710048,China,2.Guodian Nanjing Automation Co.,Nanjing 211100,China)
Abstract:
An improved multi-objective particle swarm optimization algorithm based on differential evolution(DE-IMOPSO) was proposed to solve multi-objective optimization problem.Differential evolution was used for Pareto set to increase its diversity.And a circular crowded sorting approach was adopted to improve the uniformity of the population distribution.A new multi-objective fitness roulette algorithm was applied to select the global best location of each particle to make it approach to Pareto frontier more close...
Keywords:multi-objective  Particle warm optimization(PSO)  differential evolution  circular crowded sorting  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号