首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的因果图网络结构学习
引用本文:石庆喜,梁新元张勤. 基于遗传算法的因果图网络结构学习[J]. 重庆大学学报(自然科学版), 2006, 29(4): 111-114
作者姓名:石庆喜  梁新元张勤
作者单位:重庆工商大学,计算机学院,重庆,400067;重庆大学,自动化学院,重庆,400030;重庆大学,自动化学院,重庆,400030
摘    要:在因果图理论中,采用了图形化和直接因果强度来表达知识和因果关系,它克服了贝叶斯网的一些不足,已发展成了一个能够处理离散变量和连续变量的混合模型.但是因果图的结构得由领域专家给出,这在实际中很难办到.鉴于因果图结构的复杂度随论域中节点个数的增加呈指数上升,寻找最有可能因果图网络结构成为了NP-HARD难题.文中给出了如何利用已知数据集,寻找最有可能的因果图网络结构设计的遗传算法(Genetic Algorithm,GA).

关 键 词:因果图  因果图网络结构  机器学习  遗传算法
文章编号:1000-582X(2006)04-0111-04
收稿时间:2005-12-07
修稿时间:2005-12-07

Learning Causality Diagram Structure Based on Genetic Algorithm
SHI Qing-xi. Learning Causality Diagram Structure Based on Genetic Algorithm[J]. Journal of Chongqing University(Natural Science Edition), 2006, 29(4): 111-114
Authors:SHI Qing-xi
Affiliation:1. Deptartment of Computer, Chongqing Technology and Business University, Chongqing 400067, China; 2. College of Automation, Chongqing University, Chongqing 400030, China
Abstract:The Causality Diagram theory,which adopted graphical expression of knowledge and direct causality intensity of causality,overcomes some shortages in Belief Network and has evolved into a mixed causality diagram methodology coped with discrete and continuous variable.But it is difficult that the structure of Causality Diagram given by expert.Because the complexity of causality diagram structure goes up exponentially through the number of the vertex's increasing,it is NP-hard problem to find the most possible structure from a set of data.The authors discuss approaches and present Genetic Algorithm,to find the most possible structure from a set of data.Experiment shows the method is effective.
Keywords:causality diagram   causality diagram structure   machine learning   genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号