Abstract: | ![]() This paper proposes and implements a new methodology for forecasting time series, based on bicorrelations and cross‐bicorrelations. It is shown that the forecasting technique arises as a natural extension of, and as a complement to, existing univariate and multivariate non‐linearity tests. The formulations are essentially modified autoregressive or vector autoregressive models respectively, which can be estimated using ordinary least squares. The techniques are applied to a set of high‐frequency exchange rate returns, and their out‐of‐sample forecasting performance is compared to that of other time series models. Copyright © 2001 John Wiley & Sons, Ltd. |