首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于SVR的综合预测方法及应用
引用本文:张云龙,潘泉,张洪才. 一种基于SVR的综合预测方法及应用[J]. 空军工程大学学报(自然科学版), 2005, 6(3): 19-21
作者姓名:张云龙  潘泉  张洪才
作者单位:[1]西北工业大学自动化学院,陕西西安710072 [2]西北工业大学自动化学院,陕西西安710072//空军第一航空学院基础部,河南信阳464000
基金项目:国家自然科学基金资助项目(60172037)
摘    要:针对一类因变量具有复杂自变量、且不具备相同采样周期的预测问题,综合运用支持向量回归估计(SVR)、多元回归和主成分分析等多种数据分析技术,提出了一种综合预测方法,建立起了飞机故障率与其错综复杂的影响因素间的一种数学关系,并且采用航空装备质量控制的统计数据对所提出的方法进行了实验,预测结果显示了方法的有效性。在影响因素量化过程中,还引入了Pearson相关系数方法。

关 键 词:SVR 多元回归 主成分分析 飞机故障率 综合预测
文章编号:1009-3516(2005)03-0019-03

New Synthetic Prediction Method Based on SVR and Its Application
ZHANG Yun-long,PAN Quan,ZHANG Hong-cai. New Synthetic Prediction Method Based on SVR and Its Application[J]. Journal of Air Force Engineering University(Natural Science Edition), 2005, 6(3): 19-21
Authors:ZHANG Yun-long  PAN Quan  ZHANG Hong-cai
Affiliation:ZHANG Yun-long 1,2,PAN Quan 1,ZHANG Hong-cai 1
Abstract:For the problem that the dependent variable has many independent variables and their sampling periods are also different, a predicting method is proposed by using synthetically the data analysis methods of support vector regression (SVR), multivariate regression and principal component analysis, etc. The method can be briefly described as follows: 1. Predicting with the independent variables which have dense sampling periods based on SVR, and then the results are synchronized to have the same sampling period with the dependent variable. 2. Amending the results by using another linear or non-linear method which includes SVR itself, with the rest independent variables which have the same sampling periods with the dependent variable. 3. In order to increase the predictive accuracy, three data processing methods (principal component analysis, standardization and normalization) are integrated. 4. Two approaches, error mean square line and small error probability, are also introduced to evaluating this synthetic method. By using the method, the mathematical relation between the aircraft's failure ratio and its anfractuous factors is first established. The results show that the method is efficient in predicting the aircraft's failure ratio. In the process of quantifying some influencing factors of the aircraft's failure ratio, the Pearson's correlation coefficient method is also adopted.
Keywords:support vector regression (SVR)  multivariate regression  principal component analysis  aircraft's failure ratio  synthetic prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《空军工程大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号