首页 | 本学科首页   官方微博 | 高级检索  
     

两矩阵乘积的{1,3M,4N}-逆的反序
引用本文:秦莹莹. 两矩阵乘积的{1,3M,4N}-逆的反序[J]. 五邑大学学报(自然科学版), 2009, 23(2): 55-58
作者姓名:秦莹莹
作者单位:五邑大学,数理系,广东,江门,529020
摘    要:利用广义Schur补的极大秩研究了两个矩阵乘积的{1,3M,4N}-逆的反序.给出了反序B{1,3N,4K}A{1,3M,4N}包含于(AB){1,3M,4K)成立的充分必要条件.

关 键 词:反序  广义逆  加权广义逆  矩阵的极大秩  广义Schur补

On Reverse Order Law for{1,3M,4N}-inverse of Two Matrix Product
QIN Ying-ying. On Reverse Order Law for{1,3M,4N}-inverse of Two Matrix Product[J]. Journal of Wuyi University(Natural Science Edition), 2009, 23(2): 55-58
Authors:QIN Ying-ying
Affiliation:QIN Ying-ying (Department of Mathematics & Physics, Wuyi University, Jiangmen 529020, China)
Abstract:In this paper, we study the reverse order law for {1,3M,4N}-inverse of two matrix product by using the maximal rank of generalized Schur complement. We derive the equivalent condition for B{1,3N,4K}A{1,3M,4N} lohtain in (AB){1,3M,4K} .
Keywords:reverse order law  generalized inverse  weighted generalized inverse  matrix maximal rank  generalized Schur complement
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号