首页 | 本学科首页   官方微博 | 高级检索  
     

能量收集通信系统中基于深度Q网络的最大化保密速率功率控制策略
引用本文:李朝辉,雷维嘉. 能量收集通信系统中基于深度Q网络的最大化保密速率功率控制策略[J]. 重庆邮电大学学报(自然科学版), 2021, 33(3): 364-371. DOI: 10.3979/j.issn.1673-825X.201908300308
作者姓名:李朝辉  雷维嘉
作者单位:重庆邮电大学 通信与信息工程学院,重庆400065
基金项目:国家自然科学基金(61971080,61471076);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0432,cstc2017jcyjAX0204);重庆市教委科学技术研究重点项目(KJZD-K201800603)
摘    要:研究由能量收集发射节点、目的节点和窃听节点组成的能量收集通信系统中,以最大化平均保密传输速率为目标的发送功率控制问题.在环境状态信息事先未知,且系统模型中信道系数、电池电量、收集的能量连续取值的场景下,提出一种基于深度Q网络(deep Q network,DQN)的、仅依赖于当前系统状态的在线功率分配算法.将该功率分配...

关 键 词:能量收集  深度Q网络  功率分配  保密速率
收稿时间:2019-08-30
修稿时间:2021-03-12

Power control strategy based on deep Q network for the maximization of secrecy rate in energy harvesting communication systems
LI Zhaohui,LEI Weijia. Power control strategy based on deep Q network for the maximization of secrecy rate in energy harvesting communication systems[J]. Journal of Chongqing University of Posts and Telecommunications, 2021, 33(3): 364-371. DOI: 10.3979/j.issn.1673-825X.201908300308
Authors:LI Zhaohui  LEI Weijia
Affiliation:School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
Abstract:This paper studies the transmission power control problem in an energy harvesting communication system composed of energy harvesting transmitting node, destination node and eavesdropping node, aiming at maximizing the average secure transmission rate. In the case that the environmental state information is unknown in advance, the channel coefficients, battery power, and collected energy are continuously taken in the system model, an online power allocation algorithm based on deep Q network that only depends on the current system state is proposed. Firstly, the power allocation problem is modeled as a Markov decision process. Then, the neural network approximate Q value function is used to solve the problem of infinite combinations of system states. Finally, the decision problem is solved through the deep Q network to obtain the power control strategy that only depends on the current channel state and battery state. The simulation results show that compared with the random power selection algorithm, the greedy algorithm and the Q learning algorithm, the proposed algorithm can obtain a higher long-term average secrecy rate.
Keywords:energy harvesting  deep Q network  online power allocation  secrecy rate
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号