首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的舰船雷达目标特征抽取与分类方法研究
引用本文:梁民,孙仲康. 基于神经网络的舰船雷达目标特征抽取与分类方法研究[J]. 系统工程与电子技术, 1993, 0(8)
作者姓名:梁民  孙仲康
作者单位:湖南医科大学仪器设备维修培训中心(梁民),国防科技大学电子技术系(孙仲康)
摘    要:本文着重研究应用神经网络来进行舰船雷达目标特征抽取与分类问题,提出了一种基于Mellin变换和多层前馈神经网络的特征抽取方法和一种基于Kohonen网络组的特征分类方法。采用实地录取的三类舰船雷达目标视频回波数据对本文提出的有关方法进行检验,结果表明本文提出的雷达目标特征抽取与分类的神经网络方法是切实可行的,其抽取的特征具有良好的稳定性,其分类的精度很高,明显优于传统的K-邻近分类器。

关 键 词:目标回波  预处理  ~+神经网络  特征分析  目标特征  船用雷达

The Methods for Feature Extraction and Classification of Radar Ship Target Using Neural Network
Liang MinThe Training Center for Maintenance ofInstruments and Equipment in Hunan Medical University of Ministry of Public Health,ChangshaSun ZhongkangDept. E.E,Natl. Univ,Deferse Tech.,Changsha. The Methods for Feature Extraction and Classification of Radar Ship Target Using Neural Network[J]. System Engineering and Electronics, 1993, 0(8)
Authors:Liang MinThe Training Center for Maintenance ofInstruments  Equipment in Hunan Medical University of Ministry of Public Health  ChangshaSun ZhongkangDept. E.E  Natl. Univ  Deferse Tech.  Changsha
Abstract:The problem of applying neural network to the feature extraction and classification of radar ship target is discussed in this paper. A new feature extraction method is proposed based on Mellin transform and multi-layered feedforward neural network. A new type of neural network classifier is designed due to a group of Kohonen networks. Experiments are carried out for the proposed methods with practical incoherent radar ship target video-echo data and the corresponding results indicate that: a)The features extracted by the proposed method have both scale- and shift-invariance, and b) The classifier designed in the paper has much higher classification accuracy than K-nearest neighbour classifier.
Keywords:Target return   Preprocessing   Neural network   Feature extraction   Feature classification.  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号