摘 要: | 针对飞机复合材料结构损伤难以有效识别问题,本文提出一种基于增量型极限学习机(Incremental Extreme Learning Machine,I-ELM)的飞机复合材料结构损伤识别新方法。首先对某型机用复合材料层合板进行冲击,而后对其进行疲劳拉伸试验,通过优化布局在复合材料层合板上的光纤光栅传感器募集应变信息,并对其进行预处理。采用互补总体平均经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)方法对募集的应变信息进行自适应分解,得到多个本征模态分量(Intrinsic Mode Function,IMF),计算各阶IMF分量的样本熵,通过核熵成分分析(Kernel Entropy Component Analysis,KECA)方法对样本熵进行特征融合,构建融合特征向量,采用融合特征向量建立基于I-ELM损伤识别模型,通过实验对损伤识别模型的有效性进行了验证,并与所构建的BP的损伤识别模型的识别结果进行了比较。结果表明,该方法能有效对飞机复合材料结构损伤进行识别,具有很好的应用前景。
|