首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机回归在油气钻井成本预测中的应用
引用本文:马加传,刘天时. 支持向量机回归在油气钻井成本预测中的应用[J]. 西安石油大学学报(自然科学版), 2010, 25(3)
作者姓名:马加传  刘天时
作者单位:西安石油大学,计算机学院,陕西,西安,710065
摘    要:
钻井成本是钻井公司成本的重要组成部分,对钻井成本进行准确预测,有利于提高钻井成本的控制和计划管理水平.应用作业成本法分析影响钻井成本的主要因素,结合某钻井公司钻井成本数据,运用支持向量机回归建立预测模型,同多元回归与BP神经网络回归进行对比,验证了支持向量机模型具有较高的预测精度.

关 键 词:向量机  钻井成本  预测模型  BP神经网络

Application of support vector machine regression in the forecast of oil-gas drilling cost
MA Jia-chuan,LIU Tian-shi. Application of support vector machine regression in the forecast of oil-gas drilling cost[J]. Journal of Xian Shiyou University, 2010, 25(3)
Authors:MA Jia-chuan  LIU Tian-shi
Abstract:
Oil-gas drilling cost is a vital part in the cost of a drilling engineering company.The accurate forecast of the drilling cost will be helpful to the cost controlling and project planning of a drilling engineering company.The factors of influencing the drilling cost are analyzed using activity-based costing,according to the practical drilling cost data of a drilling engineering company,the drilling cost forecasting model is established using support vector machine regression.Compared with multi-variable linear regression and BP neural network,the support vector machine regression has higher forecasting accuracy.
Keywords:support vector machine  drilling cost  forecast model  BP neural network
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号