首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的多光谱遥感图像超像素分割算法
引用本文:任伟建,刘泽宇,霍凤财,康朝海,任璐,张永丰. 一种改进的多光谱遥感图像超像素分割算法[J]. 吉林大学学报(理学版), 2022, 60(2): 351-360. DOI: 10.13413/j.cnki.jdxblxb.2021161
作者姓名:任伟建  刘泽宇  霍凤财  康朝海  任璐  张永丰
作者单位:1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318;2. 黑龙江省网络化与智能控制重点实验室, 黑龙江 大庆 163318; 3. 海洋石油工程股份有限公司, 天津300450;4. 大庆油田有限责任公司 第二采油厂规划设计研究所, 黑龙江 大庆 163318
基金项目:黑龙江省自然科学基金;国家自然科学基金
摘    要:
针对简单线性迭代聚类算法在多光谱遥感图像超像素分割中存在的未充分利用图像特征信息及超像素尺寸、 数量固定导致分割精度较低的问题, 提出将流形 简单线性迭代聚类算法引入到遥感图像超像素分割任务中, 并对其进行改进. 首先, 给出一种基于彩色局部二进制模式改进的多光谱遥感图像纹理特征提取方法; 其次, 扩展流形 简单线性迭代聚类算法的光谱空间, 使算法可以适应高维图像数据; 最后, 改进流形 简单线性迭代聚类算法的聚类距离度量, 融合图像的多段光谱特征、 空间特征及纹理特征对像素进行迭代聚类, 实现内容敏感超像素分割. 实验结果表明, 与现有方法相比, 该算法对多光谱遥感图像的超像素分割结果更准确, 在边缘召回率、 欠分割误差、 可达细分精度指标上均有提升, 能改善多光谱遥感图像分割预处理方法中精度较低的问题.

关 键 词:多光谱遥感图像   超像素分割   局部二进制模式   流形 简单线性迭代聚类  
收稿时间:2021-04-23

An Improved Superpixel Segmentation Algorithm of Multi-spectral Remote Sensing Images
REN Weijian,LIU Zeyu,HUO Fengcai,KANG Chaohai,REN Lu,ZHANG Yongfeng. An Improved Superpixel Segmentation Algorithm of Multi-spectral Remote Sensing Images[J]. Journal of Jilin University: Sci Ed, 2022, 60(2): 351-360. DOI: 10.13413/j.cnki.jdxblxb.2021161
Authors:REN Weijian  LIU Zeyu  HUO Fengcai  KANG Chaohai  REN Lu  ZHANG Yongfeng
Affiliation:1. School of Electrical Engineering & Information, Northeast Petroleum University, Daqing 163318,  Heilongjiang Province, China; 2. Hei
longjiang Provincial Key Laboratory of Networking and Intelligent Control, Daqing 163318, Heilongjiang Province, China; 3.  Offshore Oil Engineering Company Limited, Tianjin 300450, China; 4. Planning and Design of No.2 Oil Production Plant, Daqing Oilfield Co., Ltd., Daqing 163318, Heilongjiang Province, China
Abstract:
Aiming at the problem that the simple linear iterative clustering (SLIC) algorithm in the superpixel segmentation of multi-spectral remote sensing images underutilized the image feature information and the fixed size and number of superpixels leaded to low segmentation accuracy, we proposed to introduce manifold SLIC (MSLIC) algorithm into the task of superpixel segmentation of remote sensing images and improve it. Firstly, we proposed an improved texture feature extraction method for multi-spectral remote sensing images based on color local binary pattern (CoLBP). Secondly, we expanded the spectral space of the MSLIC algorithm so that the algorithm could adapt to high-dimensional image data. Finally, we improved the clustering distance measurement of the MSLIC algorithm, fused the multi-spectral features, spatial features and texture features of the image to perform iterative clustering of pixels to achieve content-sensitive superpixel segmentation. The experimental results show that compared with the existing methods, the proposed algorithm has more accurate superpixel segmentation results of multispectral remote sensing images, and improves the edge recall rate, under segmentation error and subdivision accuracy. It can improve the problems of low accuracy in the preprocessing method of multispectral remote sensing image segmentation.
Keywords:multi-spectral remote sensing images   superpixel segmentation   local binary pattern   manifold simple linear iterative clustering  
本文献已被 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号