首页 | 本学科首页   官方微博 | 高级检索  
     

改进PSO-LSTM算法预测高速公路交通量
作者姓名:乔建刚  李硕  刘怡美  彭瑞
作者单位:河北工业大学土木与交通学院;河北省高速公路京雄筹建处
基金项目:国家自然科学(52278342),国家安全生产监督总局科技项目(hebei-0009-2017AQ)
摘    要:高速公路交通政策的制定需要准确的预测交通量,基于此,选用LSTM机器学习模型对其研究,针对LSTM模型中参数确定的问题,选用 PSO算法对其优化,同时针对PSO算法中粒子位置更新问题,以公式中各参数含义为切入点进行改进,将PSO算法公式中原来静态的惯性权重及学习权重改为会随着迭代次数及粒子位置改变而改变的动态值,从而达到搜寻精度提高的目的,据此构造改进PSO-LSTM模型,最后通过实例计算分析,分别对高速公路的工作日及休息日进行预测。结果表明改进的PSO-LSTM模型较LSTM模型在工作日及休息日交通量的预测上,其评价指标均方根误差分别提高了12.19%、10.97%,平均绝对误差分别提高了17.06%、15.17%,平方绝对百分比误差分别提高24.56%、23.88%,精度提高值明显高于PSO-LSTM模型。改进PSO-LSTM模型在交通量预测精度上具有显著提高作用,且抗干扰能力强,可以为政策的合理制定提供更可靠的依据。

关 键 词:公路运输管理、高速公路、交通量、长短期记忆网络、粒子群算法
收稿时间:2023-06-16
修稿时间:2024-02-27
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号