摘 要: | 针对当前印刷电路板PCB(Printed Circuit Board)裸板缺陷检测算法对小目标检测准确率较低、误检率过高等问题,一种改进的YOLO-PCB缺陷检测算法被提出。新算法在YOLOv5s算法的基础上引入注意力机制,增强特征图的通道特征;同时引入加权双向特征金字塔网络改进特征融合层,使网络实现更高层次的特征融合;而且增加小目标检测层,提高网络对印刷电路板上小目标缺陷的检测能力。实验结果表明,相较于原YOLOv5算法,改进后的检测算法具有更强的特征提取融合能力和更高的检测精度,YOLO-PCB算法的mAP_0.5提升了4.08%,mAP0.5:0.95提升了56.69%,精确度提升了1.81%,召回率提升了6.76%。
|