首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
支持向量机的凸优化求解
作者姓名:
周正松
李瑶
陶德元
作者单位:
四川大学锦城学院
摘 要:
支持向量机(SVM)是一种基于统计学习理论的机器学习方法,由于其优越的学习性能,已经成为当前模式识别、数据挖掘、大数据处理等机器学习领域的研究热点.查阅相关同类文章,发现其中对SVM理论中公式,如距离函数d、拉格朗日函数L(w,b,α)、二次凸优化函数f(x)等的来龙去脉缺少细致的阐述.本文对SVM理论中典型的线性最优二分类问题的求解进行了完整的推导,并给出了对岩屑岩性分类识别的结果,也为今后的非线性多类模式分解作出铺垫.
关 键 词:
支持向量机 模式识别 凸优化 线性分类
收稿时间:
2015-06-29
修稿时间:
2016-01-21
本文献已被
CNKI
等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号