首页 | 本学科首页   官方微博 | 高级检索  
     

联想神经网络的风速序列预测分析
引用本文:杨雨浓,修春波. 联想神经网络的风速序列预测分析[J]. 重庆大学学报(自然科学版), 2016, 39(4): 139-146. DOI: 10.11835/j.issn.1000-582X.2016.04.018
作者姓名:杨雨浓  修春波
作者单位:1. 西北大学 信息科学与技术学院,西安 710127; 重庆师范大学 教务处,重庆 401331;2. 天津工业大学 电工电能新技术天津市重点实验室,天津,300387
基金项目:重庆市科委资助项目(cstc2013kjrc-qnrc40001,cstc2013jcyjA80013)。
摘    要:为了提高风速序列预测的可靠性,针对具有混沌特性的风速序列,构造了一种用于风速序列预测的联想网络。以风速序列的波动性作为相似性测度准则,构造联想网络的存储样本模式,根据存储模式中蕴含的关联信息完成网络的无监督学习,从而完成具有自相似性的风速序列的一步或多步预测分析。与传统前向型神经网络相比,该网络预测机理明确,预测结果唯一,且可一次给出多步预测结果。仿真实验结果表明,该网络的具有良好预测性能,适用于风速序列的动态预测。

关 键 词:联想网络  风速序列  混沌  预测
收稿时间:2016-01-20

Wind speed time series prediction based on associative network
YANG Yunong and XIU Chunbo. Wind speed time series prediction based on associative network[J]. Journal of Chongqing University(Natural Science Edition), 2016, 39(4): 139-146. DOI: 10.11835/j.issn.1000-582X.2016.04.018
Authors:YANG Yunong and XIU Chunbo
Affiliation:School of Information Science and Technology, Northwestern University, Xi''an 710127, P. R. China;Teaching Affairs Office, Chongqing Normal University, Chongqing 401331, P. R. China and Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tianjin Polytechnic University, Tianjin 300387, P. R. China
Abstract:In order to improve the reliability of wind speed series prediction, a new associative network was constructed to predict the wind speed series with chaotic characteristics. Stored sample patterns were constructed according to the similarity measure of the volatile of the wind speed series. Utilizing the correlation information contained in the stored sample patterns, the network adopts an unsupervised learning algorithm to complete the weight training. One step or multi-step prediction of the wind speed series which have self-similarity can be completed by the associative network. Compared with the conventional forward neural network, the prediction mechanism of the associative prediction network is explicit, and the prediction result is uniqueness. The network can also give one step or multi-step prediction results simultaneously in once calculation. Simulation results show that the associative network has good prediction performance, and can be applied to predict dynamically the wind speed series.
Keywords:associative network  wind speed series  chaos  prediction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号