首页 | 本学科首页   官方微博 | 高级检索  
     

最小二乘支持向量机在人脸识别中的应用
引用本文:何晨光,贺思德,董志民. 最小二乘支持向量机在人脸识别中的应用[J]. 云南大学学报(自然科学版), 2008, 30(3): 239-245
作者姓名:何晨光  贺思德  董志民
作者单位:1. 云南大学,信息学院,云南,昆明,650091
2. 华中科技大学,软件学院,湖北,武汉,430074
摘    要:
 支持向量机(SVM)模式识别方法具备良好的分类性能和鲁棒性,在介绍了典型支持向量机与最小二乘支持向量机(LS_SVM)原理的基础上,给出最小二乘支持向量机的算法实现过程,将其应用于人脸识别当中,取得较典型支持向量机在时间上较好的效果.在OPL人脸库中的实验结果表明,基于LS_SVM的人脸自动识别系统更能适用于实时性要求较高的场合.

关 键 词:人脸识别  支持向量机  最小二乘支持向量机
文章编号:0258-7971(2008)03-0239-07
修稿时间:2007-09-13

The application of least squares Support Vector Machine in face recognition
HE Chen-guang,HE Si-de,DONG Zhi-min. The application of least squares Support Vector Machine in face recognition[J]. Journal of Yunnan University(Natural Sciences), 2008, 30(3): 239-245
Authors:HE Chen-guang  HE Si-de  DONG Zhi-min
Affiliation:1. College of Information, Yunnan University, Kunming 650091, China;2. School of Software Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:
Support Vector Machine (SVM)is a popular discriminant method for the very purpose of achieving high separability between the different patterns in whose classification one is interested with good classification and robust performance.The method of calculation of Least Squares Support Vector Machine (LS_SVM) is introduced on the basis of the classic SVM and LS_SVM theories and used in face recognition to achieve a faster effect than the typical SVM.The experimental results on ORL databases show that LS_SVM system is more applicable to the face recognition environment which demanding realtime application.
Keywords:face recognition  Support Vector Machine  least squares Support Vector Machine
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《云南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《云南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号