首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波的钦州水稻产量多时间尺度分析与预测
引用本文:李晓冬,吴胜军,杜耘,孙俊英,杜俊,李小路. 基于小波的钦州水稻产量多时间尺度分析与预测[J]. 世界科技研究与发展, 2009, 31(3): 507-509
作者姓名:李晓冬  吴胜军  杜耘  孙俊英  杜俊  李小路
作者单位:1. 中国科学院测量与地球物理研究所,武汉,430077;中国科学院研究生院,北京,100049
2. 中国科学院测量与地球物理研究所,武汉,430077
3. 中国科学院测量与地球物理研究所,武汉,430077:
4. 中国科学院研究生院,北京,100049;中国科学院地理科学与资源研究所,北京,100101
5. 青岛崂山国土资源分局,青岛,266061
基金项目:武汉市科技攻关项目,中国科学院知识创新方向项目 
摘    要:利用小波诊断技术对广西钦州1950~2005年水稻产量和播种面积进行了多时间尺度分析,并利用基于小波的ARIMA模型进行了预测。分析结果表明:56年来,钦州水稻总产量和单位产量波动具有明显的3a、7a和25a特征时间尺度,播种面积7a特征时间尺度主要受农村土地制度改革影响。基于小波的ARIMA模型在水稻产量、播种面积预测方面精度很高,预测误差与气象灾害和土地政策变化有关。利用基于小波的水稻产量多时间尺度分析与预测方法,可以辅助水稻产量增减周期的分析以及对未来趋势的判断,对于结合供求关系合理调整种植面积,促进农业可持续发展提供帮助。

关 键 词:水稻产量  小波  时间尺度  ARIMA模型  预测

Multiple Time Scale Analysis and Forecast of Paddy Yield in Qinzhou Based on Wavelet Analysis
LI Xiaodong,WU Shengjun,DU Yun,SUN Junying,DU Jun,LI Xiaolu. Multiple Time Scale Analysis and Forecast of Paddy Yield in Qinzhou Based on Wavelet Analysis[J]. World Sci-tech R & D, 2009, 31(3): 507-509
Authors:LI Xiaodong  WU Shengjun  DU Yun  SUN Junying  DU Jun  LI Xiaolu
Affiliation:LI Xiaodong,WU Shengjun,DU Yun, SUN Junying,DU Jun,LI Xiaolu( 1. Institute of Geodesy and Geophysics, Chinese Academy of Science, Wuhan 430077 ; 2. Graduate School of Chinese Academy of Science, Beijing 100049; 3. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101 ;4. Qingdao Laoshan Land and Resources Bureau, Qingdao 266061 )
Abstract:The changes in yield of paddy and sown area in Qinzhou from 1950 to 2005 have been analyzed at multi-time scales with Morlet wavelet technique. The results show that the yield per unit area and total yield of paddy have 3-year,7-year and 25-year characteristic time scales from the figures of wavelet coefficient. The 7-year characteristic time scale of sown area of paddy is influenced by the changes of rural land policies. The simulation results of the yield per unit area and total yield of paddy show the accuracy and efficiency of the wavelet analysis-based ARIMA model, and the prediction error is mainly caused by meteorological disasters and the changes of rural land policies. Multiple time scale analysis and forecast of paddy yield based on wavelet analysis can be used to analyze the periods of increasing yield and decreasing yield of paddy and indicate the trend of future yield. The model will help adjust the sown area combining with the relationship of supply and demand and promote sustainable agricultural development.
Keywords:paddy yield  wavelet  time scales  ARIMA model  forecast
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号