首页 | 本学科首页   官方微博 | 高级检索  
     

隧道围岩应力时序的神经网络预测模型
引用本文:任松 姜德义 蒋再文 刘新荣. 隧道围岩应力时序的神经网络预测模型[J]. 重庆大学学报(自然科学版), 2006, 29(4): 77-79,86
作者姓名:任松 姜德义 蒋再文 刘新荣
作者单位:重庆大学,西南资源开发及环境灾害控制工程教育部重点实验室,重庆,400030;重庆高速公路发展公司,东南分公司,重庆,400060
基金项目:国家高技术研究发展计划(863计划)
摘    要:围岩应力是影响隧道稳定性的根本因素,掌握隧道围岩应力的变化发展趋势,是准确判断隧道稳定性的前提.针对隧道围岩应力变化难以准确预测的问题,作者在分析了隧道围岩应力变化规律和主要影响因素的基础上,采用BP神经网络建立了隧道围岩应力时序的神经网络预测模型.模型在綦万高速公路观音岩隧道施工中成功应用,结果表明采用神经网络预测隧道围岩应力时序是可行的,其使用简便,预测准确.

关 键 词:隧道  围岩应力  神经网络  预测模型
文章编号:1000-582X(2006)04-0077-03
收稿时间:2005-12-16
修稿时间:2005-12-16

Neural Network Model for Predicting the Transformation Tendency of the Stress on the Surrounding Rocks of Tunnel
REN Song,JIANG De-yi,JIANG Zai-wen,LIU Xin-rong. Neural Network Model for Predicting the Transformation Tendency of the Stress on the Surrounding Rocks of Tunnel[J]. Journal of Chongqing University(Natural Science Edition), 2006, 29(4): 77-79,86
Authors:REN Song  JIANG De-yi  JIANG Zai-wen  LIU Xin-rong
Abstract:The stress on the surrounding rocks affects severely the stability of tunnel. To estimate the stability of tunnel needs the transformation tendency of the stress on the surrounding rocks. After the transformation tendency of the stress on the surrounding rocks and the factors affected it are analyzed, the neural network model for predicting the stress on the surrounding rocks is created. The model is applied successfully to predict the change of the stress of the Guanyingyan tunnel in the Qiwan expressway, which proves that it is feasible to predict the stress on the surrounding rocks with the neural network model. The method is convenient and correct.
Keywords:tunnel   stress on the surrounding rocks   neural network, predicting model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号