首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波基的SVM多气体融合
引用本文:林继鹏,刘君华. 基于小波基的SVM多气体融合[J]. 吉林大学学报(信息科学版), 2005, 23(4): 402-407
作者姓名:林继鹏  刘君华
作者单位:西安交通大学,电气工程学院,西安,710049;西安交通大学,电气工程学院,西安,710049
摘    要:为了提高气体传感器在多气体环境下的检测灵敏度,基于小波对偶框架和支持向量核函数的条件,提出了一种支持向量小波核函数.该核函数具备小波的多尺度插值特性和稀疏变化特性,提高了模型的精度和迭代的收敛速度,适用于信号的局部分析、信噪分离和突变信号的检测,从而能在提高支持向量机(SVM:Support Vector Machine)泛化能力的同时,提高辨识效果,减少计算量.基于该核函数和正则化理论提出的最小二乘小波支持向量机用于非线性系统辨识,对sin c函数的逼近.该小波核得到的绝对误差不超过0.004;在多气体分析中,比RBF(Radial Base Function)核所得的偏差小18.3%.这些表明SVM小波核具有更好的泛化能力.

关 键 词:小波支持向量机  多组分气体分析  泛化能力
文章编号:1671-5896(2005)04-0402-06
修稿时间:2004-06-08

Multi-Component Gas Data Fusion Based on Wavelet Support Vector Machine
LIN Ji-peng,LIU Jun-hua. Multi-Component Gas Data Fusion Based on Wavelet Support Vector Machine[J]. Journal of Jilin University:Information Sci Ed, 2005, 23(4): 402-407
Authors:LIN Ji-peng  LIU Jun-hua
Abstract:A wavelet kernel for SVM(Support Vector Machine) based on wavelet dual frame theory and conditions of constructing SVM kernel is presented. It increases the precision and convergent rate of the model,and is especially suitable for local signal analysis, signal-noise separation and detection of jumping signals with the characteristics of multi-scale interpolation and sparse variation, thus enhances the generalization ability of the SVM, recognition efficiency and computation burden is alleviated. According to the wavelet kernel function and the regularization theory, a LS-WSVM (Least Square Wavelet Support Vector Machine) is proposed to simplify the solving process of SVM. The LS-WSVM is then applied to the nonlinear system identification to test the validity of the wavelet kernel function. In function sin c simulation, the Absolute error is no more than 0.004. In multi-gas analysis, the standard deviation is lower 18.3% than RBF(Radial Base Function) kernel.This hints that it has better generalization ability.
Keywords:wavelet support vector machine  multi-component gas analyzing  predictive ability
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号