首页 | 本学科首页   官方微博 | 高级检索  
     

双解析函数的Riemann边值逆问题
引用本文:王明华. 双解析函数的Riemann边值逆问题[J]. 四川师范大学学报(自然科学版), 2003, 26(2): 132-134
作者姓名:王明华
作者单位:重庆渝西学院,数学与计算机科学系,重庆,永川,402168
基金项目:国家自然科学基金(19571010)资助项目~~
摘    要:给出双解析函数的一类Riemann边值逆问题正则型与非正则型情况的提法。基于双解析函数的正则型Riemann边值问题,讨论了双解析函数Riemann边值逆问题正则型情况的可解性,得到了该边值逆问题的可解性结论:当问题的指标κ≥0时,该边值逆问题具有2κ 1个线性无关解;当指标κ<0时,该边值逆问题只有零解,即双解析函数的正则型Riemann边值逆问题的一般解具有2κ 1个自由度。

关 键 词:双解析函数  Riemann边值逆问题  可解性

The Inverse Riemann Boundary Value Problems for Bianalytic Functions
Abstract. The Inverse Riemann Boundary Value Problems for Bianalytic Functions[J]. Journal of Sichuan Normal University(Natural Science), 2003, 26(2): 132-134
Authors:Abstract
Abstract:A formulation of a class of inverse Riemann boundary value problems for bianalytic functions is proposed, its normal and nonnormal cases are also proposed. On the basis of the Riemann boundary value problems of normal case for bianalytic functions, the solvability of the inverse Riemann boundary value problems of normal case for bianalytic functions is discussed, and the theorems of solvability of the problems are obtained:the problems possess 2κ+1 linearly independent solutions when its index κ0; it only possesses zero-solution when the index κ<0. In a word, the general solution of the problems has 2κ+1 degree of freedom.
Keywords:Bianalytic functions  Inverse Riemann boundary value problems  Solvability
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号