首页 | 本学科首页   官方微博 | 高级检索  
     

非紧流形上抛物方程的椭圆型梯度估计
引用本文:吴佳贤,黄琴. 非紧流形上抛物方程的椭圆型梯度估计[J]. 漳州师院学报, 2010, 0(4): 6-12
作者姓名:吴佳贤  黄琴
作者单位:[1]漳州师范学院数学与信息科学系,福建漳州363000 [2]莆田学院数学系,福建莆田351100
基金项目:福建省教育厅A类科技项目(JA09202; JA08193)
摘    要:
给出完备非紧黎曼流形M上的抛物方程ut=△u+Xu+hu的正解的全局梯度估计,该估计与M的维数n无关.这里X是任意非零C 1向量场;h是定义在M×(0,+∞)上的非负函数,对于自变量x是C 1函数.作为应用,我们将给出该方程的解的Harnack估计.

关 键 词:完备非紧流形  抛物方程  梯度估计  Harnack估计  Laplacian比较定理

Elliptic-Type Gradient Estimate for a Parabolic Equation on Noncompact Manifolds
WU Jia-xian,HUANG Qin. Elliptic-Type Gradient Estimate for a Parabolic Equation on Noncompact Manifolds[J]. Journal of ZhangZhou Teachers College(Philosophy & Social Sciences), 2010, 0(4): 6-12
Authors:WU Jia-xian  HUANG Qin
Affiliation:1.Department of Mathematics and Information Science,Zhangzhou Normal University,Zhangzhou,Fujian 363000,China;2.Department of Math,Putian University,Putian,Fujian 351100,China)
Abstract:
In this paper,we study a global gradient estimate for the positive solution to the following parabolic equation on a complete noncompact Riemannian manifold,where X is an any nonzero vector field,and h is a negative function defined on which is in the x-variable.As an application,the dimension-free Harnack estimate for the above parabolic equation(1.2) is proved.
Keywords:complete noncompact manifold  parabolic equation  gradient estimate  Harnack estimate  Laplacian comparison theorem
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号