首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6763篇
  免费   428篇
  国内免费   574篇
系统科学   1958篇
丛书文集   164篇
教育与普及   21篇
理论与方法论   8篇
现状及发展   71篇
综合类   5543篇
  2024年   26篇
  2023年   70篇
  2022年   158篇
  2021年   165篇
  2020年   161篇
  2019年   99篇
  2018年   77篇
  2017年   128篇
  2016年   122篇
  2015年   210篇
  2014年   306篇
  2013年   283篇
  2012年   445篇
  2011年   504篇
  2010年   409篇
  2009年   433篇
  2008年   449篇
  2007年   503篇
  2006年   459篇
  2005年   414篇
  2004年   347篇
  2003年   274篇
  2002年   238篇
  2001年   224篇
  2000年   208篇
  1999年   199篇
  1998年   163篇
  1997年   163篇
  1996年   148篇
  1995年   120篇
  1994年   69篇
  1993年   60篇
  1992年   43篇
  1991年   24篇
  1990年   21篇
  1989年   18篇
  1988年   8篇
  1987年   9篇
  1986年   2篇
  1985年   1篇
  1955年   5篇
排序方式: 共有7765条查询结果,搜索用时 819 毫秒
1.
研究一类具有混合时滞的中立型Cohen-Grossberg神经网络。通过建立线性辅助方程, 得到该神经网络存在唯一的概周期解的新结果,同时也给出此概周期解的存在范围。  相似文献   
2.
针对低空目标仰角估计时, 多径信号间的混叠严重影响雷达的测角性能的问题, 基于压缩感知理论的波达方向(direction of arrival, DOA)估计算法与多输入多输出(multi-input and multi-output, MIMO)雷达体制结合起来共同进行低空目标DOA估计的研究, 提出了一种基于互协方差矩阵稀疏重构的MIMO雷达低空目标DOA估计算法。首先, 对MIMO雷达多径接收信号广义匹配滤波后的虚拟矩阵向量化处理, 并针对向量化后虚拟孔径扩展带来运算量大的缺点, 通过降维处理来减少运算量; 然后利用多快拍数互协方差矩阵中的噪声独立不相关的优点, 降低噪声影响, 提高算法估计性能; 最后转化为凸优化问题进行稀疏恢复。仿真结果表明算法在直达信号与多径反射信号相互削弱的情况下, 仍能有效估计低空目标的仰角, 较L1-SVD和L1-SRACV算法对低空目标具有更好的仰角估计性能。  相似文献   
3.
基于线上线下多种渠道的创意扩散研究是企业管理的新兴研究热点之一.为此,引入多重网络理论与传播动力学理论,考虑工作中线下沟通、工作中通过企业社交媒体在线沟通及非工作时间电子沟通三种渠道,构建多种渠道构成的多重网络中的创意扩散模型.研究创意在多重网络中持续扩散的阈值条件,并对创意在多重网络中的扩散过程进行仿真实验.结果表明:1)当员工在单位时间内通过以上各渠道沟通的平均次数较接近时,在多重网络中创意扩散的速度较快,创意扩散的范围较广;2)与匀质网络相比,当非工作时间电子沟通子网络是无标度网络时,在多重网络中创意扩散的速度较快,扩散的范围较广;3)增大子网络层间创意扩散的相互促进作用对整个多重网络中创意的有效扩散有积极影响.  相似文献   
4.
相比频率固定的脉冲多普勒体制, 频率捷变体制在抗干扰方面具有显著优势。但在该体制下, 基于匹配滤波的信号处理算法存在旁瓣平台问题, 难以与动目标检测兼容。压缩感知理论将目标参数估计建模作为欠定方程求解, 为该问题提供了解决思路。在相参频率捷变雷达中, 压缩感知能否准确重建目标是一个基础性问题。本文梳理了针对该问题的相关研究, 借助相变理论与相变曲线的解析表达式, 定量描述了捷变频雷达重建目标的成功概率与主要系统和目标参数之间的关系; 该理论性能边界与仿真实际所能达到的性能相接近。此外, 还探讨了现有成果在实际应用中的价值, 展望了未来研究方向。  相似文献   
5.
利用线性稳定性理论和Lyapunov函数方法,研究了一类离散时间复杂网络系统的输出同步问题,得到了系统输出指数同步的充分性条件,数值算例表明了方法的有效性.  相似文献   
6.
当单脉冲雷达受到箔条质心干扰时, 将视为波束内存在两个不可分辨的目标, 由于目标和箔条干扰回波混叠耦合, 导致单脉冲测角偏差, 最终致使目标跟踪丢失。对此, 利用宽带单脉冲雷达测角精度高的优点和极化信息, 提出一种基于极化单脉冲雷达的扩展目标角度估计方法。首先,分析宽带单脉冲雷达体制下箔条质心干扰的特点, 给出扩展目标双极化和差信号模型。然后, 根据和、差通道极化回波信号, 通过联立方程组, 估计出目标和箔条干扰的到达角(angle of arrival, AOA), 为后续利用目标角度信息跟踪目标提供条件。最后,通过蒙特卡罗仿真实验分析关键参数对目标角度估计性能的影响, 并与传统单脉冲雷达体制的测角方法进行比较。理论分析和仿真实验表明, 在质心干扰条件下, 宽带单脉冲雷达估计目标AOA的性能要优于传统单脉冲雷达。  相似文献   
7.
We propose an ensemble of long–short‐term memory (LSTM) neural networks for intraday stock predictions, using a large variety of technical analysis indicators as network inputs. The proposed ensemble operates in an online way, weighting the individual models proportionally to their recent performance, which allows us to deal with possible nonstationarities in an innovative way. The performance of the models is measured by area under the curve of the receiver operating characteristic. We evaluate the predictive power of our model on several US large‐cap stocks and benchmark it against lasso and ridge logistic classifiers. The proposed model is found to perform better than the benchmark models or equally weighted ensembles.  相似文献   
8.
现有通信干扰方法, 通常基于通信侦察中获取的目标信号特征进行干扰决策, 选取合适的干扰波形实施干扰, 难以应对目标信号特征未知或参数动态变化的情况。为此, 提出一种基于生成对抗网络(generative adversarial networks, GAN)的通信干扰波形生成技术, 运用GAN直接提取目标信号的潜在特征, 并生成与目标信号特征相似的干扰波形。在介绍GAN原理的基础上, 首先设计网络模型, 并对学习率进行优化, 使GAN更适用于时间序列通信干扰波形的生成。然后通过对不同类型和参数的通信信号进行干扰波形生成实验, 验证了该技术的泛化性。最后进行干扰效果对比试验, 结果表明, GAN生成的干扰波形干扰效果能够逼近最佳干扰效果。  相似文献   
9.
基于脉冲描述字进行雷达信号分选时,传统聚类算法需要预先人工设定聚类中心和聚类数目。针对该问题,提出一种基于数据场理论联合脉冲重复间隔(pulse repetition interval,PRI)变换与聚类的雷达信号分选新方法。首先,依据数据场理论,基于势值大小实现干扰点剔除,而后利用PRI变换算法进行PRI估计,依据PRI估计值将归一化脉冲描述字数据预分类,进而以各类数据集中心间的欧氏距离小于辐射因子为准则进行类别合并,自动得到初始聚类中心和聚类数目,最后通过改进K-Means算法完成聚类分选。仿真实验表明:所提方法能够应对存在频率捷变,重频参差、抖动、参数交叠、局部脉冲丢失的复杂信号环境,分选正确率明显提升。  相似文献   
10.
为了提高从宽角合成孔径雷达(synthetic aperture radar, SAR)图像中提取目标后向散射各向异性特性的性能,在宽角SAR字典稀疏表示模型的基础上,提出一种基于高斯字典原子的高精度宽角SAR成像方法。在字典构造上,采用不同中心位置、相同方差的高斯函数。在求解稀疏表示系数上,采用广义最小最大凹惩罚稀疏重构算法求解。最后,根据稀疏表示系数的重构结果以及构造的字典得到目标的后向散射各向异性特性。通过仿真实验和Backhoe数据对算法进行验证,结果表明,该方法能够高精度地提取目标的后向散射各向异性特性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号