首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
综合类   7篇
  2013年   1篇
  2011年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
高质量网格的设计与生成是复杂流动CFD精确计算最主要的决定性因素之一.本文通过采用新颖的多层嵌套重叠网格策略、可靠的重叠网格切割准则、快速的多级网格切割方法和高效的隐式切割技术,发展了一种多层多块隐式嵌套重叠网格技术以及相应的多级多重网格流动计算方法.在生成嵌套重叠网格时,只需要初始网格和边界条件,而无需人工干预,实现了嵌套重叠网格的自动切割.对某级网格进行多重网格流动计算时,仅考虑该级网格的嵌套重叠切割处理,而忽略低级粗网格的网格切割影响,有效提高了流动的计算效率.两个典型的复杂流动算例的计算结果与实验值吻合良好,证明了本文方法的可靠性.  相似文献   
2.
离心通风机气动声源识别方法研究与应用   总被引:1,自引:1,他引:0  
为了满足离心通风机降噪的迫切需要,提出了一种以固体壁面静压变化率为识别参数的主要偶极子声源的简便识别方法。将静压变化率的时均值定义为偶极子声源强度,声源强度大的地方就是主要声源区。该方法只需对非定常流动进行数值模拟,从而省去了繁琐的声场计算,虽不能定量给出通风机气动噪声的大小或具体的降噪效果,但可以为通风机的降噪提供有用的指导。通过将该方法应用于指导T9-19No.4A离心通风机的降噪实践,证实了该方法在工程应用中的有效性。  相似文献   
3.
圆管内旋转点声源声学频域分析   总被引:1,自引:0,他引:1  
在任意运动点声源声辐射频域解的基础上,利用无限长圆环管道的格林函数推导了旋转点声源在圆管内空间任一点处的声压计算公式,讨论了单板子点声源作旋转运动时的声场分布规律和声场方向性特征,研究了源频率、旋转频率和流动马赫数等对声场声学结构的影响.研究结果表明:声场分布具有很强的空间指向性;源频率和旋转频率的变化将伴随着多普勒效应出现;在点源的上、下游,各频率的声压幅值基本对称;来流马赫数的大小对声场有影响,会使某些频率的声辐射出现尖锐的峰值,因此要避免点声源在某些流动马赫数下旋转.  相似文献   
4.
基于非定常流场的离心风机气动噪声分析   总被引:21,自引:0,他引:21  
提出了一种不直接求解声场却能为离心风机降噪提供有用信息的分析方法.首先,利用有限容积法对风机内部的非定常流场进行计算.然后,采用时域和频域分析方法对流场内静压脉动的强度和频率进行分析.最后,根据声学基本理论,判定风机内部主要气动噪声源的位置及噪声类型.应用该方法对某离心风机进行了计算,并将分析计算结果与该风机的噪声测量结果进行了对比,证明该方法能够有效地判断气动噪声源的位置和噪声类型.  相似文献   
5.
离心风机气动声学分析的一个理论模型和计算方法   总被引:2,自引:1,他引:2  
通过求解具有延迟时间,包含三维流速影响的非齐次波动方程,得到了离心叶轮气动导报学的基本方程,对气动声源的分析表明,在离心风机的气动噪声中,起主要影响作用的是偶极子和四极子声源,而流动过程中产生的涡是最主要的四极子源,提出了一种用于分析离心风机气动噪声的声学模型,即忽略蜗壳进、出口声学软边界的影响,将蜗壳简化为一个封闭的声学硬边界柱壳,并推出柱壳腔体内的格林函数,利用该函数对离心风机内部由旋转叶轮产生的气动声场进行了时域求解并给出了理论解方程,在计算出离心风机内部的三维非稳定流场之后,利用本文模型和理论解方程就可求出与该流场相对应的气动声场。  相似文献   
6.
采用雷诺平均数值模拟方法对空调室外机内部的三维黏性非定常流动进行了计算,获取了用于噪声分析的气动声源。在此基础上,依据Lowson方程对脉动压力产生的气动声场进行了仿真,预测了空调室外机各部位气动声源对声场的贡献,并对锯齿轴流风叶的降噪效果进行了分析。为了识别偶极子声源,对固体壁面处的静压脉动进行了分析。结果表明:静压脉动的相位一致是采用偶极子声源强度进行声源识别的前提条件。室外机噪声数值预测结果与试验在定性上吻合较好,说明噪声数值分析方法具有良好的工程应用价值。  相似文献   
7.
利用激光多普勒测速仪(LDV)测量系统测量了3个不同的工况下离心风机直板型叶片扩压器内部的三维速度场,并对叶片扩压器内部流场及其随流量变化的规律进行了分析.同时,在实验测量的基础上对整个实验风机进行了非定常数值模拟,并对比分析了扩压器内部及其上游流场的数值计算和实验结果.结果表明:数值结果与实验结果吻合得很好;沿着扩压器的流道方向气流的速度逐渐减小,非定常速度脉动也逐渐减弱,非定常速度脉动的频率和叶轮的叶片通过频率一致;随着流量的减小,扩压器的扩压能力逐渐增强,扩压器叶片压力面附近的低速区逐渐减小,扩压器上游及内部流场受蜗壳的盘、盖侧空腔影响逐渐增大.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号