首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  综合类   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
实体对齐能够发现不同知识图谱实体间的对齐关系,是多源知识融合的基础。现有的基于知识表示学习的方法依赖大量标注数据,且并未利用知识图谱中属性等结构化信息,限制了实体对齐的效果。针对这个问题,文章提出融合语义和结构信息的实体对齐方法,使用协同训练(Cotraining)框架,将特征分为语义视角和结构视角,在两个视角下分别训练基于两个图谱联合表示学习(Joint Embedding)的实体对齐模型,并不断选出最可信的实体对齐结果用于辅助另一视角下模型的训练,实现语义和结构信息的融合,从而提升实体对齐的效果。同时,提出使用属性强约束,限制协同训练过程中产生的漂移。实验证明,与传统方法相比,该方法在准确率和F1值上都有提升。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号