排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
强夯法有效加固深度影响因素的理论分析 总被引:3,自引:0,他引:3
强夯法有效加固深度是强夯实践中最为关注的问题之一,夯锤设计参数与加固地基的土性是其主要的影响因素,本文采用弹性半空间理论和瑞利波理论对强夯法有效加固深度的影响因素进行了理论分析。 相似文献
2.
为了研究强夯法的加固机理和强夯过程中土体的变形规律,专门设计了半模试验箱和用于测试动应力的微型土压力盒,采用半圆形夯锤,进行强夯法加固粉土地基室内模型试验.分析夯击次数、落距、能级和锤径等参数变化时,土体内部动应力和位移的变化规律,研究各种参数变化对强夯加固效果的影响.试验结果表明:在能级一定时,单击夯沉量和影响深度随着夯击次数的增加而逐渐减小,累积夯沉量和影响深度随着夯击次数的增加而逐渐增加;在不同能级作用下,随着落距的增大,影响深度总体是在不断地减小;夯坑深度和影响深度都随着能级的增加而逐渐增大,影响深度与夯坑深度比值介于3~4之间;影响深度随着锤径的增大而减小,影响宽度则随着锤径的减小而有所增大. 相似文献
3.
依托在高填方夯实地基上进行的桩侧负摩阻力现场试验,根据负摩阻力测试结果,提出考虑固结效应的高填方夯实地基桩侧负摩阻力计算方法。该方法对高填方地基强夯加固区与非加固区分段进行侧摩阻力计算,采用太沙基一维固结理论计算桩侧土沉降,反映固结效应对桩侧摩阻力的影响,利用土-混凝土界面直接剪切试验得到桩土荷载传递函数,反映桩土相对位移对侧阻力发挥程度的影响,采用有限差分法求得计算公式的数值解,并将计算结果与现场试验结果对比分析。结果表明,采用文中推导的公式计算的桩侧负摩阻力沿深度的变化趋势与现场试验测试结果一致,现场实测桩侧负摩阻力值约是理论计算值的1/2,工程应用时可将理论计算的桩侧负摩阻力值乘以0.5的折减系数。 相似文献
4.
闫楠;白晓宇;水伟厚;张明义;廖天辉 《中南大学学报(自然科学版)》2015,46(7):2571-2581
以广东某石油仓储工程为依托,通过8 MN?m能级强夯处理陆域回填区和海域回填区,对陆域试夯区和海域试夯区分别进行3根超长冲孔灌注桩单桩竖向抗压大吨位载荷试验及桩身力学测试。根据超长冲孔灌注桩实测数据探讨超长灌注桩的荷载传递机理和竖向承载特性。研究结果表明:试桩荷载-沉降(Q-s)曲线为缓变型,桩顶残余沉降量均在49%以上,桩顶回弹率介于20.4%~50.6%之间;极限荷载作用下,6根试桩表现出摩擦桩或端承摩擦桩的特性,桩端承载力只占总荷载很小一部分,陆域3根试桩为6%~34%,海域3根试桩为16%~35%;桩侧摩阻力和桩端阻力的发挥具有异步性,荷载主要由桩侧摩阻力承担。经过强夯处理浅层地基,桩侧摩阻力峰值发生在桩体中上部或浅部土层,即距桩顶(0.14~0.47)倍桩长的位置;部分土层的极限侧摩阻力较现行规范提供的设计侧阻力偏大;海域试桩比陆域试桩桩端阻力发挥更充分。 相似文献
5.
利用能级为15 000kN.m的高能级强夯加固粗颗粒碎石回填地基,测试夯击过程中夯坑及其周边土体的沉降变形,并对强夯后的地基加固效果进行检测与评价.可发现,第1、2和3遍夯击时的平均夯坑深度分别达到4.38,3.71和1.93m,夯击过程中地表土体都发生沉降变形,并未发生隆起;利用多道瞬态面波法评价该场地强夯加固深度至少达到16.5m,并且在整个加固深度范围内,未出现软弱层,夯后地基承载力远高于设计要求值.最后,提出了利用Menard公式评价高能级强夯处理粗颗粒碎石回填地基有效加固深度时n值的范围,为同类场地条件下高能级强夯工程的设计、施工与检测提供了参考. 相似文献
1