首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   0篇
  国内免费   2篇
系统科学   1篇
理论与方法论   1篇
现状及发展   27篇
研究方法   11篇
综合类   69篇
自然研究   5篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   7篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   11篇
  2011年   21篇
  2010年   5篇
  2008年   11篇
  2007年   4篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  1998年   1篇
  1990年   1篇
  1984年   1篇
  1966年   1篇
排序方式: 共有114条查询结果,搜索用时 46 毫秒
1.
Persistence of soil organic matter as an ecosystem property   总被引:65,自引:0,他引:65  
Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.  相似文献   
2.
3.
Cilia-associated human genetic disorders are striking in the diversity of their abnormalities and their complex inheritance. Inactivation of the retrograde ciliary motor by mutations in DYNC2H1 causes skeletal dysplasias that have strongly variable expressivity. Here we define previously unknown genetic relationships between Dync2h1 and other genes required for ciliary trafficking. Mutations in mouse Dync2h1 disrupt cilia structure, block Sonic hedgehog signaling and cause midgestation lethality. Heterozygosity for Ift172, a gene required for anterograde ciliary trafficking, suppresses cilia phenotypes, Sonic hedgehog signaling defects and early lethality of Dync2h1 homozygotes. Ift122, like Dync2h1, is required for retrograde ciliary trafficking, but reduction of Ift122 gene dosage also suppresses the Dync2h1 phenotype. These genetic interactions illustrate the cell biology underlying ciliopathies and argue that mutations in intraflagellar transport genes cause their phenotypes because of their roles in cilia architecture rather than direct roles in signaling.  相似文献   
4.
Control of spontaneously emitted light lies at the heart of quantum optics. It is essential for diverse applications ranging from miniature lasers and light-emitting diodes, to single-photon sources for quantum information, and to solar energy harvesting. To explore such new quantum optics applications, a suitably tailored dielectric environment is required in which the vacuum fluctuations that control spontaneous emission can be manipulated. Photonic crystals provide such an environment: they strongly modify the vacuum fluctuations, causing the decay of emitted light to be accelerated or slowed down, to reveal unusual statistics, or to be completely inhibited in the ideal case of a photonic bandgap. Here we study spontaneous emission from semiconductor quantum dots embedded in inverse opal photonic crystals. We show that the spectral distribution and time-dependent decay of light emitted from excitons confined in the quantum dots are controlled by the host photonic crystal. Modified emission is observed over large frequency bandwidths of 10%, orders of magnitude larger than reported for resonant optical microcavities. Both inhibited and enhanced decay rates are observed depending on the optical emission frequency, and they are controlled by the crystals' lattice parameter. Our experimental results provide a basis for all-solid-state dynamic control of optical quantum systems.  相似文献   
5.
Hrdy I  Hirt RP  Dolezal P  Bardonová L  Foster PG  Tachezy J  Embley TM 《Nature》2004,432(7017):618-622
Hydrogenosomes are double-membraned ATP-producing and hydrogen-producing organelles of diverse anaerobic eukaryotes. In some versions of endosymbiotic theory they are suggested to be homologues of mitochondria, but alternative views suggest they arose from an anaerobic bacterium that was distinct from the mitochondrial endosymbiont. Here we show that the 51-kDa and 24-kDa subunits of the NADH dehydrogenase module in complex I, the first step in the mitochondrial respiratory chain, are active in hydrogenosomes of Trichomonas vaginalis. Like mitochondrial NADH dehydrogenase, the purified Trichomonas enzyme can reduce a variety of electron carriers including ubiquinone, but unlike the mitochondrial enzyme it can also reduce ferredoxin, the electron carrier used for hydrogen production. The presence of NADH dehydrogenase solves the long-standing conundrum of how hydrogenosomes regenerate NAD+ after malate oxidation. Phylogenetic analyses show that the Trichomonas 51-kDa homologue shares common ancestry with the mitochondrial enzyme. Recruitment of complex I subunits into a H2-producing pathway provides evidence that mitochondria and hydrogenosomes are aerobic and anaerobic homologues of the same endosymbiotically derived organelle.  相似文献   
6.
Naumov II  Bellaiche L  Fu H 《Nature》2004,432(7018):737-740
Bulk ferroelectrics undergo structural phase transformations at low temperatures, giving multi-stable (that is, multiple-minimum) degenerate states with spontaneous polarization. Accessing these states by applying, and varying the direction of, an external electric field is a key principle for the operation of devices such as non-volatile ferroelectric random access memories (NFERAMs). Compared with bulk ferroelectrics, low-dimensional finite ferroelectric structures promise to increase the storage density of NFERAMs 10,000-fold. But this anticipated benefit hinges on whether phase transitions and multi-stable states still exist in low-dimensional structures. Previous studies have suggested that phase transitions are impossible in one-dimensional systems, and become increasingly less likely as dimensionality further decreases. Here we perform ab initio studies of ferroelectric nanoscale disks and rods of technologically important Pb(Zr,Ti)O3 solid solutions, and demonstrate the existence of previously unknown phase transitions in zero-dimensional ferroelectric nanoparticles. The minimum diameter of the disks that display low-temperature structural bistability is determined to be 3.2 nm, enabling an ultimate NFERAM density of 60 x 10(12) bits per square inch-that is, five orders of magnitude larger than those currently available. Our results suggest an innovative use of ferroelectric nanostructures for data storage, and are of fundamental value for the theory of phase transition in systems of low dimensionality.  相似文献   
7.
The evolutionarily conserved SLX4 protein, a key regulator of nucleases, is critical for DNA damage response. SLX4 nuclease complexes mediate repair during replication and can also resolve Holliday junctions formed during homologous recombination. Here we describe the phenotype of the Btbd12 knockout mouse, the mouse ortholog of SLX4, which recapitulates many key features of the human genetic illness Fanconi anemia. Btbd12-deficient animals are born at sub-Mendelian ratios, have greatly reduced fertility, are developmentally compromised and are prone to blood cytopenias. Btbd12(-/-) cells prematurely senesce, spontaneously accumulate damaged chromosomes and are particularly sensitive to DNA crosslinking agents. Genetic complementation reveals a crucial requirement for Btbd12 (also known as Slx4) to interact with the structure-specific endonuclease Xpf-Ercc1 to promote crosslink repair. The Btbd12 knockout mouse therefore establishes a disease model for Fanconi anemia and genetically links a regulator of nuclease incision complexes to the Fanconi anemia DNA crosslink repair pathway.  相似文献   
8.
9.
Progressive kidney failure is a genetically and clinically heterogeneous group of disorders. Podocyte foot processes and the interposed glomerular slit diaphragm are essential components of the permeability barrier in the kidney. Mutations in genes encoding structural proteins of the podocyte lead to the development of proteinuria, resulting in progressive kidney failure and focal segmental glomerulosclerosis. Here, we show that the canonical transient receptor potential 6 (TRPC6) ion channel is expressed in podocytes and is a component of the glomerular slit diaphragm. We identified five families with autosomal dominant focal segmental glomerulosclerosis in which disease segregated with mutations in the gene TRPC6 on chromosome 11q. Two of the TRPC6 mutants had increased current amplitudes. These data show that TRPC6 channel activity at the slit diaphragm is essential for proper regulation of podocyte structure and function.  相似文献   
10.
Macrophages have a critical role in inflammatory and immune responses through their ability to recognize and engulf apoptotic cells. Here we show that macrophages initiate a cell-death programme in target cells by activating the canonical WNT pathway. We show in mice that macrophage WNT7b is a short-range paracrine signal required for WNT-pathway responses and programmed cell death in the vascular endothelial cells of the temporary hyaloid vessels of the developing eye. These findings indicate that macrophages can use WNT ligands to influence cell-fate decisions--including cell death--in adjacent cells, and raise the possibility that they do so in many different cellular contexts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号