首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   6篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2000年   1篇
  1990年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Pervasive alteration of tree communities in undisturbed Amazonian forests   总被引:1,自引:0,他引:1  
Amazonian rainforests are some of the most species-rich tree communities on earth. Here we show that, over the past two decades, forests in a central Amazonian landscape have experienced highly nonrandom changes in dynamics and composition. Our analyses are based on a network of 18 permanent plots unaffected by any detectable disturbance. Within these plots, rates of tree mortality, recruitment and growth have increased over time. Of 115 relatively abundant tree genera, 27 changed significantly in population density or basal area--a value nearly 14 times greater than that expected by chance. An independent, eight-year study in nearby forests corroborates these shifts in composition. Contrary to recent predictions, we observed no increase in pioneer trees. However, genera of faster-growing trees, including many canopy and emergent species, are increasing in dominance or density, whereas genera of slower-growing trees, including many subcanopy species, are declining. Rising atmospheric CO2 concentrations may explain these changes, although the effects of this and other large-scale environmental alterations remain uncertain. These compositional changes could have important impacts on the carbon storage, dynamics and biota of Amazonian forests.  相似文献   
2.
Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes.  相似文献   
3.
Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.  相似文献   
4.
Dual-component NMDA receptor currents at a single central synapse   总被引:2,自引:0,他引:2  
E D'Angelo  P Rossi  J Garthwaite 《Nature》1990,346(6283):467-470
Present thinking about the way that the NMDA (N-methyl-D-aspartate) class of glutamate receptor operates at central synapses relies mainly on information obtained from single-channel and whole-cell recordings from cultured neurons stimulated by exogenous NMDA receptor agonists. The mechanisms that operate in the postsynaptic membrane of a normal neuron following release of the natural transmitter are far less clear. An important problem is that most normal neurons receive many excitatory synapses (10(3)-10(5) per cell) and these synapses are located on slender dendritic elements far away from the somatic recording site, making the study of discrete synaptic events difficult. Typically, when populations of synapses are activated, NMDA receptor-mediated synaptic potentials appear as slowly rising, long-lasting waves superimposed on faster, non-NMDA-receptor potentials. Although believed to be critical for NMDA receptor function, this slow time-course would not be predicted from single-channel kinetics and its origin remains puzzling. We have now analysed the events occurring at the level of a single excitatory synapse using a simple, small, neuron--the cerebellar granule cell--which has an unusually simple glutamatergic input. By applying high-resolution whole-cell recording techniques to these cells in situ, we were able to study the nature of elementary NMDA receptor-mediated synaptic currents. Contrary to expectations, the prominent currents are fast but are followed by slow ones. Both types of current are strongly voltage-dependent but differ subtly in this respect. Furthermore, the currents are absent unless glycine is provided.  相似文献   
5.
Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide   总被引:1,自引:0,他引:1  
The molecular machinery responsible for the generation of transport carriers moving from the Golgi complex to the plasma membrane relies on a tight interplay between proteins and lipids. Among the lipid-binding proteins of this machinery, we previously identified the four-phosphate adaptor protein FAPP2, the pleckstrin homology domain of which binds phosphatidylinositol 4-phosphate and the small GTPase ARF1. FAPP2 also possesses a glycolipid-transfer-protein homology domain. Here we show that human FAPP2 is a glucosylceramide-transfer protein that has a pivotal role in the synthesis of complex glycosphingolipids, key structural and signalling components of the plasma membrane. The requirement for FAPP2 makes the whole glycosphingolipid synthetic pathway sensitive to regulation by phosphatidylinositol 4-phosphate and ARF1. Thus, by coupling the synthesis of glycosphingolipids with their export to the cell surface, FAPP2 emerges as crucial in determining the lipid identity and composition of the plasma membrane.  相似文献   
6.
Natural killer cells and cytotoxic T lymphocytes accomplish the critically important function of killing virus-infected and neoplastic cells. They do this by releasing the pore-forming protein perforin and granzyme proteases from cytoplasmic granules into the cleft formed between the abutting killer and target cell membranes. Perforin, a 67-kilodalton multidomain protein, oligomerizes to form pores that deliver the pro-apoptopic granzymes into the cytosol of the target cell. The importance of perforin is highlighted by the fatal consequences of congenital perforin deficiency, with more than 50 different perforin mutations linked to familial haemophagocytic lymphohistiocytosis (type 2 FHL). Here we elucidate the mechanism of perforin pore formation by determining the X-ray crystal structure of monomeric murine perforin, together with a cryo-electron microscopy reconstruction of the entire perforin pore. Perforin is a thin 'key-shaped' molecule, comprising an amino-terminal membrane attack complex perforin-like (MACPF)/cholesterol dependent cytolysin (CDC) domain followed by an epidermal growth factor (EGF) domain that, together with the extreme carboxy-terminal sequence, forms a central shelf-like structure. A C-terminal C2 domain mediates initial, Ca(2+)-dependent membrane binding. Most unexpectedly, however, electron microscopy reveals that the orientation of the perforin MACPF domain in the pore is inside-out relative to the subunit arrangement in CDCs. These data reveal remarkable flexibility in the mechanism of action of the conserved MACPF/CDC fold and provide new insights into how related immune defence molecules such as complement proteins assemble into pores.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号