首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   0篇
现状及发展   14篇
研究方法   42篇
综合类   111篇
自然研究   10篇
  2015年   1篇
  2014年   1篇
  2012年   14篇
  2011年   27篇
  2010年   4篇
  2008年   13篇
  2007年   17篇
  2006年   13篇
  2005年   19篇
  2004年   7篇
  2003年   10篇
  2002年   12篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
  1966年   2篇
  1965年   3篇
  1962年   1篇
  1946年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
1.
We have genotyped 14,436 nonsynonymous SNPs (nsSNPs) and 897 major histocompatibility complex (MHC) tag SNPs from 1,000 independent cases of ankylosing spondylitis (AS), autoimmune thyroid disease (AITD), multiple sclerosis (MS) and breast cancer (BC). Comparing these data against a common control dataset derived from 1,500 randomly selected healthy British individuals, we report initial association and independent replication in a North American sample of two new loci related to ankylosing spondylitis, ARTS1 and IL23R, and confirmation of the previously reported association of AITD with TSHR and FCRL3. These findings, enabled in part by increased statistical power resulting from the expansion of the control reference group to include individuals from the other disease groups, highlight notable new possibilities for autoimmune regulation and suggest that IL23R may be a common susceptibility factor for the major 'seronegative' diseases.  相似文献   
2.
3.
Short alanine peptides, containing 16 or 17 residues, appear to form alpha-helices in aqueous solution. But the main spectroscopic analyses used on helical peptides (circular dichroism and nuclear magnetic resonance) cannot distinguish between an alpha-helix (in which the ith residue is hydrogen-bonded to residue i + 4; ref. 9) and the next most common peptide helix, the 3(10)-helix10 (i-->i + 3 hydrogen-bonding). To address this problem we have designed single and doubly spin-labelled analogues of alanine-based peptides in which the nitroxide spin label forms an unbranched side chain extending from the sulphur atom of a cysteine residue. Here we report the circular dichroism, Fourier-transform infrared and electron-spin resonance spectra of these peptides under helix-forming conditions. The infrared absorbance gives an amide I' band with a frequency that is substantially different from that observed for alpha-helices. The electron-spin resonance spectra of doubly labelled helices show that the ranking of distances between side chains, around a single turn (residues 4-8), is inconsistent with an alpha-helical structure. Our experiments suggest that the more likely peptide geometry is a 3(10)-helix.  相似文献   
4.
5.
Sokolov S  Scheuer T  Catterall WA 《Nature》2007,446(7131):76-78
Ion channelopathies are inherited diseases in which alterations in control of ion conductance through the central pore of ion channels impair cell function, leading to periodic paralysis, cardiac arrhythmia, renal failure, epilepsy, migraine and ataxia. Here we show that, in contrast with this well-established paradigm, three mutations in gating-charge-carrying arginine residues in an S4 segment that cause hypokalaemic periodic paralysis induce a hyperpolarization-activated cationic leak through the voltage sensor of the skeletal muscle Na(V)1.4 channel. This 'gating pore current' is active at the resting membrane potential and closed by depolarizations that activate the voltage sensor. It has similar permeability to Na+, K+ and Cs+, but the organic monovalent cations tetraethylammonium and N-methyl-D-glucamine are much less permeant. The inorganic divalent cations Ba2+, Ca2+ and Zn2+ are not detectably permeant and block the gating pore at millimolar concentrations. Our results reveal gating pore current in naturally occurring disease mutations of an ion channel and show a clear correlation between mutations that cause gating pore current and hypokalaemic periodic paralysis. This gain-of-function gating pore current would contribute in an important way to the dominantly inherited membrane depolarization, action potential failure, flaccid paralysis and cytopathology that are characteristic of hypokalaemic periodic paralysis. A survey of other ion channelopathies reveals numerous examples of mutations that would be expected to cause gating pore current, raising the possibility of a broader impact of gating pore current in ion channelopathies.  相似文献   
6.
7.
An integrated semiconductor device enabling non-optical genome sequencing   总被引:4,自引:0,他引:4  
The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.  相似文献   
8.
9.
Streambed surveys were conducted along the upper Colorado River, Colorado, to describe the distributions of Claassenia sabulosa larvae in relation to current speed and to determine their diets. We also addressed diel feeding periodicity by sampling during both day and night. Claassenia sabulosa was more abundant in riffle habitats than in runs. A positive relationship existed between C. sabulosa abundance and stream current, with larval size increasing with current speed. Chironomidae, Baetidae, and Simulidae collectively accounted for 93% of the prey found in stonefly guts; however, these categories were not consumed equally by all C. sabulosa . Smaller C. sabulosa primarily ate chironomids, and larger individuals consumed more baetids. Only a slight difference existed in the percentage of empty guts between night- and day-collected stoneflies, and ranges of prey per gut at night were higher than those in the day, suggesting that these stoneflies may forage more intensively at night.  相似文献   
10.
Effects of the steel gene product on mouse primordial germ cells in culture.   总被引:21,自引:0,他引:21  
I Godin  R Deed  J Cooke  K Zsebo  M Dexter  C C Wylie 《Nature》1991,352(6338):807-809
Mutations at the steel (sl) and dominant white spotting (W) loci in the mouse affect primordial germ cells (PGC), melanoblasts and haemopoietic stem cells. The W gene encodes a cell-surface receptor of the tyrosine kinase family, the proto-oncogene c-kit. In situ analysis has shown c-kit messenger RNA expression in PGC in the early genital ridges. The Sl gene encodes the ligand for this receptor, a peptide growth factor, called here stem cell factor (SCF). SCF mRNA is expressed in many regions of the early mouse embryo, including the areas of migration of these cell types. It is important now to identify the role of the Sl-W interaction in the development of these migratory embryonic stem cell populations. Using an in vitro assay system, we show that SCF increases both the overall numbers and colony sizes of migratory PGC isolated from wild-type mouse embryos, and cultured on irradiated feeder layers of STO cells (a mouse embryonic fibroblast line). In the absence of feeder cells, SCF causes a large increase in the initial survival and apparent motility of PGC in culture. But labelling with bromodeoxyuridine shows that SCF is not, by itself, a mitogen for PGC. SCF does not exert a chemotropic effect on PGC in in vitro assays. These results suggest that SCF in vivo is an essential requirement for PGC survival. This demonstrates the control of the early germ-line population by a specific trophic factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号