首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   5篇
  2010年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Members of the Wiskott-Aldrich syndrome protein (WASP) family control cytoskeletal dynamics by promoting actin filament nucleation with the Arp2/3 complex. The WASP relative WAVE regulates lamellipodia formation within a 400-kilodalton, hetero-pentameric WAVE regulatory complex (WRC). The WRC is inactive towards the Arp2/3 complex, but can be stimulated by the Rac GTPase, kinases and phosphatidylinositols. Here we report the 2.3-?ngstrom crystal structure of the WRC and complementary mechanistic analyses. The structure shows that the activity-bearing VCA motif of WAVE is sequestered by a combination of intramolecular and intermolecular contacts within the WRC. Rac and kinases appear to destabilize a WRC element that is necessary for VCA sequestration, suggesting the way in which these signals stimulate WRC activity towards the Arp2/3 complex. The spatial proximity of the Rac binding site and the large basic surface of the WRC suggests how the GTPase and phospholipids could cooperatively recruit the complex to membranes.  相似文献   
2.
Crystal structure of trp repressor/operator complex at atomic resolution   总被引:98,自引:0,他引:98  
The crystal structure of the trp repressor/operator complex shows an extensive contact surface, including 24 direct and 6 solvent-mediated hydrogen bonds to the phosphate groups of the DNA. There are no direct hydrogen bonds or non-polar contacts to the bases that can explain the repressor's specificity for the operator sequence. Rather, the sequence seems to be recognized indirectly through its effects on the geometry of the phosphate backbone, which in turn permits the formation of a stable interface. Water-mediated polar contacts to the bases also appear to contribute part of the specificity.  相似文献   
3.
The three-dimensional structure of trp repressor   总被引:2,自引:0,他引:2  
The crystal structure of the Escherichia coli trp repressor has been solved to atomic resolution. The dimeric protein has a remarkable subunit interface in which five of each subunit's six helices are interlinked. The binding of L-tryptophan activates the aporepressor indirectly by fixing the orientation of the second helix of the helix-turn-helix motif and by moulding the details of the repressor's structure near the DNA binding surface.  相似文献   
4.
Comparison of the crystal structure of inactive unliganded trp aporepressor with that of trp repressor shows that binding tryptophan activates the dimer a thousandfold by moving two symmetrically-disposed flexible bihelical motifs. These flexible 'DNA-reading heads' flank a highly inflexible core domain formed by an unusual arrangement of interlocking alpha-helices from both subunits.  相似文献   
5.
Two crystal structures of the glucocorticoid receptor DNA-binding domain complexed with DNA are reported. The domain has a globular fold which contains two Zn-nucleated substructures of distinct conformation and function. When it binds DNA, the domain dimerizes, placing the subunits in adjacent major grooves. In one complex, the DNA has the symmetrical consensus target sequence; in the second, the central spacing between the target's half-sites is larger by one base pair. This results in one subunit interacting specifically with the consensus target half-site and the other nonspecifically with a noncognate element. The DNA-induced dimer fixes the separation of the subunits' recognition surfaces so that the spacing between the half-sites becomes a critical feature of the target sequence's identity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号