首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   0篇
系统科学   1篇
理论与方法论   5篇
现状及发展   22篇
研究方法   27篇
综合类   44篇
自然研究   20篇
  2021年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   4篇
  2011年   27篇
  2010年   2篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   9篇
  2004年   15篇
  2003年   7篇
  2002年   11篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
  1971年   2篇
  1968年   1篇
  1960年   2篇
  1959年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.
2.
Fibulin-5/DANCE is essential for elastogenesis in vivo.   总被引:19,自引:0,他引:19  
The elastic fibre system has a principal role in the structure and function of various types of organs that require elasticity, such as large arteries, lung and skin. Although elastic fibres are known to be composed of microfibril proteins (for example, fibrillins and latent transforming growth factor (TGF)-beta-binding proteins) and polymerized elastin, the mechanism of their assembly and development is not well understood. Here we report that fibulin-5 (also known as DANCE), a recently discovered integrin ligand, is an essential determinant of elastic fibre organization. fibulin-5-/- mice generated by gene targeting exhibit a severely disorganized elastic fibre system throughout the body. fibulin-5-/- mice survive to adulthood, but have a tortuous aorta with loss of compliance, severe emphysema, and loose skin (cutis laxa). These tissues contain fragmented elastin without an increase of elastase activity, indicating defective development of elastic fibres. Fibulin-5 interacts directly with elastic fibres in vitro, and serves as a ligand for cell surface integrins alphavbeta3, alphavbeta5 and alpha9beta1 through its amino-terminal domain. Thus, fibulin-5 may provide anchorage of elastic fibres to cells, thereby acting to stabilize and organize elastic fibres in the skin, lung and vasculature.  相似文献   
3.
Biasing reaction pathways with mechanical force   总被引:1,自引:0,他引:1  
Hickenboth CR  Moore JS  White SR  Sottos NR  Baudry J  Wilson SR 《Nature》2007,446(7134):423-427
During the course of chemical reactions, reactant molecules need to surmount an energy barrier to allow their transformation into products. The energy needed for this process is usually provided by heat, light, pressure or electrical potential, which act either by changing the distribution of the reactants on their ground-state potential energy surface or by moving them onto an excited-state potential energy surface and thereby facilitate movement over the energy barrier. A fundamentally different way of initiating or accelerating a reaction is the use of force to deform reacting molecules along a specific direction of the reaction coordinate. Mechanical force has indeed been shown to activate covalent bonds in polymers, but the usual result is chain scission. Here we show that mechanically sensitive chemical groups make it possible to harness the mechanical forces generated when exposing polymer solutions to ultrasound, and that this allows us to accelerate rearrangement reactions and bias reaction pathways to yield products not obtainable from purely thermal or light-induced reactions. We find that when placed within long polymer strands, the trans and cis isomers of a 1,2-disubstituted benzocyclobutene undergo an ultrasound-induced electrocyclic ring opening in a formally conrotatory and formally disrotatory process, respectively, that yield identical products. This contrasts with reaction initiation by light or heat alone, in which case the isomers follow mutually exclusive pathways to different products. Mechanical forces associated with ultrasound can thus clearly alter the shape of potential energy surfaces so that otherwise forbidden or slow processes proceed under mild conditions, with the directionally specific nature of mechanical forces providing a reaction control that is fundamentally different from that achieved by adjusting chemical or physical parameters. Because rearrangement in our system occurs before chain scission, the effect we describe might allow the development of materials that are activated by mechanical stress fields.  相似文献   
4.
We studied kit fox den characteristics of the northern McGregor Range of Fort Bliss Military Reservation, New Mexico, during 1994 to 1995. Twenty radio-collared kit foxes used 132 different dens, including 16 natal dens. Kit fox dens were located primarily in creosote-dominated habitat found in relatively flat, well-drained terrain. Natal dens were virtually indistinguishable from non-natal dens; however, natal den entrances were taller than non-natal den entrances. Entrances found at all dens were oriented more frequently toward the northwest and southwest. Kit foxes used more dens during the breeding (January-February) and pup-rearing season (May-July) than during gestation.  相似文献   
5.
One more thing..     
Rothwell N 《Nature》2004,427(6976):683
  相似文献   
6.
Inflammation influences iron balance in the whole organism. A common clinical manifestation of these changes is anemia of chronic disease (ACD; also called anemia of inflammation). Inflammation reduces duodenal iron absorption and increases macrophage iron retention, resulting in low serum iron concentrations (hyposideremia). Despite the protection hyposideremia provides against proliferating microorganisms, this 'iron withholding' reduces the iron available to maturing red blood cells and eventually contributes to the development of anemia. Hepcidin antimicrobial peptide (Hamp) is a hepatic defensin-like peptide hormone that inhibits duodenal iron absorption and macrophage iron release. Hamp is part of the type II acute phase response and is thought to have a crucial regulatory role in sequestering iron in the context of ACD. Mice with deficiencies in the hemochromatosis gene product, Hfe, mounted a general inflammatory response after injection of lipopolysaccharide but lacked appropriate Hamp expression and did not develop hyposideremia. These data suggest a previously unidentified role for Hfe in innate immunity and ACD.  相似文献   
7.
To rapidly identify genes required for early vertebrate development, we are carrying out a large-scale, insertional mutagenesis screen in zebrafish, using mouse retroviral vectors as the mutagen. We will obtain mutations in 450 to 500 different genes--roughly 20% of the genes that can be mutated to produce a visible embryonic phenotype in this species--and will clone the majority of the mutated alleles. So far, we have isolated more than 500 insertional mutants. Here we describe the first 75 insertional mutants for which the disrupted genes have been identified. In agreement with chemical mutagenesis screens, approximately one-third of the mutants have developmental defects that affect primarily one or a small number of organs, body shape or swimming behavior; the rest of the mutants show more widespread or pleiotropic abnormalities. Many of the genes we identified have not been previously assigned a biological role in vivo. Roughly 20% of the mutants result from lesions in genes for which the biochemical and cellular function of the proteins they encode cannot be deduced with confidence, if at all, from their predicted amino-acid sequences. All of the genes have either orthologs or clearly related genes in human. These results provide an unbiased view of the genetic construction kit for a vertebrate embryo, reveal the diversity of genes required for vertebrate development and suggest that hundreds of genes of unknown biochemical function essential for vertebrate development have yet to be identified.  相似文献   
8.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous disease involving abnormalities of melanosomes, platelet dense granules and lysosomes. Here we have used positional candidate and transgenic rescue approaches to identify the genes mutated in ruby-eye 2 and ruby-eye mice (ru2 and ru, respectively), two 'mimic' mouse models of HPS. We also show that these genes are orthologs of the genes mutated in individuals with HPS types 5 and 6, respectively, and that their protein products directly interact. Both genes are previously unknown and are found only in higher eukaryotes, and together represent a new class of genes that have evolved in higher organisms to govern the synthesis of highly specialized lysosome-related organelles.  相似文献   
9.
Individuals with hereditary hemochromatosis suffer from systemic iron overload due to duodenal hyperabsorption. Most cases arise from a founder mutation in HFE (845G-->A; ref. 2) that results in the amino-acid substitution C282Y and prevents the association of HFE with beta2-microglobulin. Mice homozygous with respect to a null allele of Hfe (Hfe-/-) or homozygous with respect to the orthologous 882G-->A mutation (Hfe(845A/845A)) develop iron overload that recapitulates hereditary hemochromatosis in humans, confirming that hereditary hemochromatosis arises from loss of HFE function. Much work has focused on an exclusive role for the intestine in hereditary hemochromatosis. HFE deficiency in intestinal crypt cells is thought to cause intestinal iron deficiency and greater expression of iron transporters such as SLC11A2 (also called DMT1, DCT1 and NRAMP2) and SLC11A3 (also called IREG1, ferroportin and MTP1; ref. 3). Published data on the expression of these transporters in the duodenum of HFE-deficient mice and humans are contradictory. In this report, we used a custom microarray to assay changes in duodenal and hepatic gene expression in Hfe-deficient mice. We found unexpected alterations in the expression of Slc39a1 (mouse ortholog of SLC11A3) and Cybrd1, which encode key iron transport proteins, and Hamp (hepcidin antimicrobial peptide), a hepatic regulator of iron transport. We propose that inappropriate regulatory cues from the liver underlie greater duodenal iron absorption, possibly involving the ferric reductase Cybrd1.  相似文献   
10.
Despite the profusion of light in deserts, morphological adaptations to increase light interception are common among desert plants. We studied branch orientation and related physiological parameters in the Mojave Desert Joshua tree, Yucca brevifolia (Agavaceae). Azimuth and inclination were measured on all leaf rosettes of 44 Y. brevifolia trees. Interception of solar radiation was modeled for leaves in hypothetical rosettes facing due south and due north in December, March, and June. Carbon isotope discrimination, nitrogen content, and conductance of water vapor were measured in leaves from north- and south-facing rosettes. Rosette azimuths were nonrandom; rosettes predominantly faced southeast. North-facing rosettes were more steeply inclined than those facing south. The preponderance of south-facing rosettes reduces self-shading and increases interception of solar radiation during the winter-spring growth period. Stomatal conductance was higher for leaves in south-facing than in north-facing rosettes. Nevertheless, discrimination against 13 C was less in leaves of south-facing rosettes, indicating that average intercellular CO 2 concentration was also lower. South-facing whorls had higher leaf nitrogen content. Greater allocation of nitrogen to leaves in south-facing whorls probably results in those leaves having a greater photosynthetic capacity than their north-facing counterparts. Orientation of rosettes to increase interception of sunlight during the period most favorable for photosynthesis, coupled with allocation of nutrients to maintain a higher photosynthetic capacity in those rosettes, should significantly increase whole-plan carbon gain in Y. brevifolia .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号