首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
综合类   9篇
自然研究   1篇
  2019年   1篇
  2018年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有10条查询结果,搜索用时 347 毫秒
1
1.
2.
During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV) disfavours homotypic bivalent antibody binding. Here we show that during the human antibody response to HIV, somatic mutations that increase antibody affinity also increase breadth and neutralizing potency. Surprisingly, the responding naive and memory B cells produce polyreactive antibodies, which are capable of bivalent heteroligation between one high-affinity anti-HIV-gp140 combining site and a second low-affinity site on another molecular structure on HIV. Although cross-reactivity to self-antigens or polyreactivity is strongly selected against during B-cell development, it is a common serologic feature of certain infections in humans, including HIV, Epstein-Barr virus and hepatitis C virus. Seventy-five per cent of the 134 monoclonal anti-HIV-gp140 antibodies cloned from six patients with high titres of neutralizing antibodies are polyreactive. Despite the low affinity of the polyreactive combining site, heteroligation demonstrably increases the apparent affinity of polyreactive antibodies to HIV.  相似文献   
3.
Morphogen gradients contribute to pattern formation by determining positional information in morphogenetic fields. Interpretation of positional information is thought to rely on direct, concentration-threshold-dependent mechanisms for establishing multiple differential domains of target gene expression. In Drosophila, maternal gradients establish the initial position of boundaries for zygotic gap gene expression, which in turn convey positional information to pair-rule and segment-polarity genes, the latter forming a segmental pre-pattern by the onset of gastrulation. Here we report, on the basis of quantitative gene expression data, substantial anterior shifts in the position of gap domains after their initial establishment. Using a data-driven mathematical modelling approach, we show that these shifts are based on a regulatory mechanism that relies on asymmetric gap-gap cross-repression and does not require the diffusion of gap proteins. Our analysis implies that the threshold-dependent interpretation of maternal morphogen concentration is not sufficient to determine shifting gap domain boundary positions, and suggests that establishing and interpreting positional information are not independent processes in the Drosophila blastoderm.  相似文献   
4.
Franosch T  Grimm M  Belushkin M  Mor FM  Foffi G  Forró L  Jeney S 《Nature》2011,478(7367):85-88
Observation of the Brownian motion of a small probe interacting with its environment provides one of the main strategies for characterizing soft matter. Essentially, two counteracting forces govern the motion of the Brownian particle. First, the particle is driven by rapid collisions with the surrounding solvent molecules, referred to as thermal noise. Second, the friction between the particle and the viscous solvent damps its motion. Conventionally, the thermal force is assumed to be random and characterized by a Gaussian white noise spectrum. The friction is assumed to be given by the Stokes drag, suggesting that motion is overdamped at long times in particle tracking experiments, when inertia becomes negligible. However, as the particle receives momentum from the fluctuating fluid molecules, it also displaces the fluid in its immediate vicinity. The entrained fluid acts back on the particle and gives rise to long-range correlations. This hydrodynamic 'memory' translates to thermal forces, which have a coloured, that is, non-white, noise spectrum. One hundred years after Perrin's pioneering experiments on Brownian motion, direct experimental observation of this colour is still elusive. Here we measure the spectrum of thermal noise by confining the Brownian fluctuations of a microsphere in a strong optical trap. We show that hydrodynamic correlations result in a resonant peak in the power spectral density of the sphere's positional fluctuations, in strong contrast to overdamped systems. Furthermore, we demonstrate different strategies to achieve peak amplification. By analogy with microcantilever-based sensors, our results reveal that the particle-fluid-trap system can be considered a nanomechanical resonator in which the intrinsic hydrodynamic backflow enhances resonance. Therefore, instead of being treated as a disturbance, details in thermal noise could be exploited for the development of new types of sensor and particle-based assay in lab-on-a-chip applications.  相似文献   
5.
The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.  相似文献   
6.
The defect microstructure of the samples manufactured from Ti-6Al-4V powder was studied using electron beam melting (EBM) in the beam current range of 17 - 13 mA. The hybrid digital complex combined positron lifetime spectroscopy and coincidence Doppler broadening spectroscopy was used to characterize the defect structure of the materials. The microstructure and defects were also analyzed by transmission electron microscopy. It has been established that the main type of the defects in the EBM manufactured samples is dislocations. According to the conducted measurements and calculations, the dislocation density in the EBM manufactured samples exceeds by two orders the similar value for the cast Ti-6Al-4Valloy. Formation of Ti-Ti-Al nanoscale clusters has been found in the EBM manufactured samples.  相似文献   
7.
Ferrissia californica (Rowell, 1863), an aquatic pulmonate [formerly widely known as Ferrisia fragilis (Tryon, 1863), is reported herein to have established a population in the Tskhal-Tsiteli, or Iazoni, Cave (Caucasus, Georgia), within the invasive range of this species. This is the first record of a sustained population of an invasive freshwater pulmonate in an underground environment. Possible consequences of this invasion are briefly discussed. It is possible that this alien snail may threaten the native snail species Motsametia borutzkii (Zhadin, 1932), which is endemic to Tskhal-Tsiteli Cave.  相似文献   
8.
Microtubules (MTs) are important components of the eukaryotic cytoskeleton: they contribute to cell shape and movement, as well as to the motions of organelles including mitotic chromosomes. MTs bind motor enzymes that drive many such movements, but MT dynamics can also contribute to organelle motility. Each MT polymer is a store of chemical energy that can be used to do mechanical work, but how this energy is converted to motility remains unknown. Here we show, by conjugating glass microbeads to tubulin polymers through strong inert linkages, such as biotin-avidin, that depolymerizing MTs exert a brief tug on the beads, as measured with laser tweezers. Analysis of these interactions with a molecular-mechanical model of MT structure and force production shows that a single depolymerizing MT can generate about ten times the force that is developed by a motor enzyme; thus, this mechanism might be the primary driving force for chromosome motion. Because even the simple coupler used here slows MT disassembly, physiological couplers may modulate MT dynamics in vivo.  相似文献   
9.
10.
Naundorf B  Wolf F  Volgushev M 《Nature》2006,440(7087):1060-1063
Neurons process and encode information by generating sequences of action potentials. For all spiking neurons, the encoding of single-neuron computations into sequences of spikes is biophysically determined by the cell's action-potential-generating mechanism. It has recently been discovered that apparently minor modifications of this mechanism can qualitatively change the nature of neuronal encoding. Here we quantitatively analyse the dynamics of action potential initiation in cortical neurons in vivo, in vitro and in computational models. Unexpectedly, key features of the initiation dynamics of cortical neuron action potentials--their rapid initiation and variable onset potential--are outside the range of behaviours described by the classical Hodgkin-Huxley theory. We propose a new model based on the cooperative activation of sodium channels that reproduces the observed dynamics of action potential initiation. This new model predicts that Hodgkin-Huxley-type dynamics of action potential initiation can be induced by artificially decreasing the effective density of sodium channels. In vitro experiments confirm this prediction, supporting the hypothesis that cooperative sodium channel activation underlies the dynamics of action potential initiation in cortical neurons.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号