首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   5篇
自然研究   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Eight glacial cycles from an Antarctic ice core   总被引:9,自引:0,他引:9  
The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long--28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.  相似文献   
2.
3.
Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 degrees C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.  相似文献   
4.
We estimated bobcat ( Lynx rufus ) density for 3 different locations in northern California using active infrared-triggered cameras. Using differences in pelage pattern as well as other physical characteristics, we identified individual bobcats from photographs, and used mark-recapture techniques to estimate population density. Camera density affected the precision of population estimates. The same population was estimated using camera densities of 0.5, 1, 2, 4, 6, and 8 cameras ? km–2. Higher camera densities resulted in more captures and recaptures of bobcats and, consequently, in more precise density estimates. Similarly, the number of photo-captures and recaptures increased with increasing study duration. Increasing the area sampled resulted in the capture of more individuals but did not increase the percentage of recaptures. While some locations captured multiple bobcat photographs (e.g., 15 at 1 station), these photos tended to be recaptures of the same individual. There were no more than 2 individuals photo-captured at any 1 camera location. Bobcat density varied among habitat types as predicted. We estimated density as 0.27 bobcats ? km –2 ( s = 0.16) overall in an area in the northern Sacramento River Valley and as 0.35 bobcats ? km –2 ( s = 0.56) in a steep and rocky canyon within the area. At a 3rd site in the Coast Range, the estimate was 0.39 bobcats ? km –2 ( s = 1.44). Bobcats were more diurnal where human activity was less common. In addition, photo-capture was significantly higher along roads and trails without an attractant than it was off-trail with an attractant.  相似文献   
5.
The marine isotopic stage 11 (MIS 11) is an extraordinarily long interglacial period in the Earth's history that occurred some 400,000 years ago and lasted for about 30,000 years. During this period there were weak, astronomically induced changes in the distribution of solar energy reaching the Earth. The conditions of this orbital climate forcing are similar to those of today's interglacial period, and they rendered the climate susceptible to other forcing--for example, to changes in the level of atmospheric carbon dioxide. Here we use ice-core data from the Antarctic Vostok core to reconstruct a complete atmospheric carbon dioxide record for MIS 11. The record indicates that values for carbon dioxide throughout the interglacial period were close to the Earth's pre-industrial levels and that both solar energy and carbon dioxide may have helped to make MIS 11 exceptionally long. Anomalies in the oceanic carbonate system recorded in marine sediments at the time, for example while coral reefs were forming, apparently left no signature on atmospheric carbon dioxide concentrations.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号