首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   1篇
理论与方法论   4篇
现状及发展   15篇
研究方法   10篇
综合类   81篇
自然研究   4篇
  2017年   1篇
  2016年   5篇
  2014年   1篇
  2013年   3篇
  2012年   9篇
  2011年   12篇
  2010年   3篇
  2009年   2篇
  2008年   10篇
  2007年   20篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1971年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
1.
2.
Attribution of observed surface humidity changes to human influence   总被引:3,自引:0,他引:3  
Willett KM  Gillett NP  Jones PD  Thorne PW 《Nature》2007,449(7163):710-712
Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.  相似文献   
3.
Clements WK  Kim AD  Ong KG  Moore JC  Lawson ND  Traver D 《Nature》2011,474(7350):220-224
Haematopoietic stem cells (HSCs) are a self-renewing population of cells that continuously replenish all blood and immune cells during the lifetime of an individual. HSCs are used clinically to treat a wide array of diseases, including acute leukaemias and congenital blood disorders, but obtaining suitable numbers of cells and finding immune-compatible donors remain serious problems. These difficulties have led to an interest in the conversion of embryonic stem cells or induced pluripotent stem cells into HSCs, which is not possible using current methodologies. To accomplish this goal, it is critical to understand the native mechanisms involved in the specification of HSCs during embryonic development. Here we demonstrate in zebrafish that Wnt16 controls a novel genetic regulatory network required for HSC specification. Non-canonical signalling by Wnt16 is required for somitic expression of the Notch ligands deltaC (dlc) and deltaD (dld), and these ligands are, in turn, required for the establishment of definitive haematopoiesis. Notch signalling downstream of Dlc and Dld is earlier than, and distinct from, known cell-autonomous requirements for Notch, strongly suggesting that novel Notch-dependent relay signal(s) induce the first HSCs in parallel to other established pathways. Our results demonstrate that somite-specific gene expression is required for the production of haemogenic endothelium.  相似文献   
4.
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smh(tn222)) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.  相似文献   
5.
Adenosine-induced slow ionic currents in the Xenopus oocyte   总被引:11,自引:0,他引:11  
I Lotan  N Dascal  S Cohen  Y Lass 《Nature》1982,298(5874):572-574
Adenosine and its 5'-phosphorylated congeners evoke specific membrane-mediated responses in excitable tissues. Available data suggest that inhibition of the target cell occurs due to hyperpolarization, and in some preparations a compound effect of ATP (excitation and inhibition) has been found. However, the ionic mechanism of the purinergic-mediated response has not been studied by standard intracellular voltage-clamping techniques. Recently, we have discovered purinergic receptors in the Xenopus oocyte, a well defined giant cell amenable to rigorous electrophysiological and biochemical studies. We report here that in these cells, adenosine-induced slow membrane responses consisted of an early depolarizing (D) transient current carried by Cl ions, followed by a steady hyperpolarizing (H) current involving K+ ions. The relative potency sequence for the D current was ATP congruent to ADP greater than AMP congruent to adenosine; this order was reversed for the H current.  相似文献   
6.
Nathan H 《Nature》2001,412(6846):477
  相似文献   
7.
Reticular synthesis and the design of new materials   总被引:18,自引:0,他引:18  
Yaghi OM  O'Keeffe M  Ockwig NW  Chae HK  Eddaoudi M  Kim J 《Nature》2003,423(6941):705-714
The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.  相似文献   
8.
Immunology: Oxygen and the inflammatory cell   总被引:3,自引:0,他引:3  
Nathan C 《Nature》2003,422(6933):675-676
  相似文献   
9.
Peroxynitrite reductase activity of bacterial peroxiredoxins   总被引:41,自引:0,他引:41  
Bryk R  Griffin P  Nathan C 《Nature》2000,407(6801):211-215
Nitric oxide (NO) is present in soil and air, and is produced by bacteria, animals and plants. Superoxide (O2-) arises in all organisms inhabiting aerobic environments. Thus, many organisms are likely to encounter peroxynitrite (OONO-), a product of NO and O2- that forms at near diffusion-limited rates, and rapidly decomposes upon protonation through isomerization to nitrate (NO3-; ref. 1) while generating hydroxyl radical (*OH) and nitrogen dioxide radical (*NO2) (refs 2, 3), both more reactive than peroxynitrite's precursors. The oxidative, inflammatory, mutagenic and cytotoxic potential (ref. 4) of peroxynitrite contrasts with the antioxidant, anti-inflammatory and tissue-protective properties ascribed to NO itself. Thus, the ability of cells to cope with peroxynitrite is central in determining the biological consequences of NO production. We considered whether cells might be equipped with enzymes to detoxify peroxynitrite. Peroxiredoxins have been identified in most genomes sequenced, but their functions are only partly understood. Here we show that the peroxiredoxin alkylhydroperoxide reductase subunit C (AhpC) from Salmonella typhimurium catalytically detoxifies peroxynitrite to nitrite fast enough to forestall the oxidation of bystander molecules such as DNA. Results are similar with peroxiredoxins from Mycobacterium tuberculosis and Helicobacter pylori. Thus, peroxynitrite reductase activity may be widespread among bacterial genera.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号