首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   0篇
系统科学   5篇
理论与方法论   1篇
现状及发展   54篇
研究方法   48篇
综合类   104篇
自然研究   7篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   11篇
  2017年   3篇
  2016年   9篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   20篇
  2011年   25篇
  2010年   7篇
  2009年   4篇
  2008年   17篇
  2007年   24篇
  2006年   17篇
  2005年   12篇
  2004年   17篇
  2003年   15篇
  2002年   13篇
  2000年   2篇
  1979年   1篇
  1969年   1篇
  1967年   2篇
排序方式: 共有219条查询结果,搜索用时 93 毫秒
1.
We measure and predict states of Activation and Happiness using a body sensing application connected to smartwatches. Through the sensors of commercially available smartwatches we collect individual mood states and correlate them with body sensing data such as acceleration, heart rate, light level data, and location, through the GPS sensor built into the smartphone connected to the smartwatch. We polled users on the smartwatch for seven weeks four times per day asking for their mood state. We found that both Happiness and Activation are negatively correlated with heart beats and with the levels of light. People tend to be happier when they are moving more intensely and are feeling less activated during weekends. We also found that people with a lower Conscientiousness and Neuroticism and higher Agreeableness tend to be happy more frequently. In addition, more Activation can be predicted by lower Openness to experience and higher Agreeableness and Conscientiousness. Lastly, we find that tracking people’s geographical coordinates might play an important role in predicting Happiness and Activation. The methodology we propose is a first step towards building an automated mood tracking system, to be used for better teamwork and in combination with social network analysis studies.  相似文献   
2.
Foam nests have evolved independently in several amphibian groups as an adaptive response to prevent predation and desiccation in dry environments. Nests are normally laid on ponds, or in underground galleries, humid forest leaf litter or terrestrial bromeliads. They are built when males or females beat a foam precursor associated with the egg masses extruded by the female. The spawning process requires the synchronic actions of the mating pair to obtain a hemispheric nest that protects the offspring. Herein, we describe the spawning behaviour of Engystomops pustulatus based on videos from 13 nesting couples from the lowlands of western Ecuador. Three variables were measured as indicators of male effort: duration of mixing events, duration of resting periods, and number of kicks per mixing event. We consider that not only male physical effort but also female behaviour influences nest structure. We suggest that nest building requires prolonged and intense physical activity by the male as well as the female’s steady position during spawning and female’s oviposition site selection. Nest building has two phases. In the first phase, the duration of resting periods, the duration of mixing events, and the number of kicks increase and are highly variable. During the second phase the three variables stabilise until the end. The volume of the nest increased mainly during the second phase. In four nesting events we observed kicking movements by the female. To our knowledge, this is the first time that female kicking has been observed in leptodactylid frogs. The function of this behaviour is unknown but our observations suggest that it may be triggered by insufficient male effort. Traditionally, female mate choice in Engystomops has been explained under models of indirect benefits exclusively. We argue that the prolonged male activity during nesting could influence female fitness directly. This will allow the operation of sexual selection via direct benefits.  相似文献   
3.
4.
5.
The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. It is currently believed that four to six crypt stem cells reside at the +4 position immediately above the Paneth cells in the small intestine; colon stem cells remain undefined. Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5, also known as Gpr49) was selected from a panel of intestinal Wnt target genes for its restricted crypt expression. Here, using two knock-in alleles, we reveal exclusive expression of Lgr5 in cycling columnar cells at the crypt base. In addition, Lgr5 was expressed in rare cells in several other tissues. Using an inducible Cre knock-in allele and the Rosa26-lacZ reporter strain, lineage-tracing experiments were performed in adult mice. The Lgr5-positive crypt base columnar cell generated all epithelial lineages over a 60-day period, suggesting that it represents the stem cell of the small intestine and colon. The expression pattern of Lgr5 suggests that it marks stem cells in multiple adult tissues and cancers.  相似文献   
6.
7.
Chipman A 《Nature》2007,447(7148):1044-1045
  相似文献   
8.
Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ~ 50 seconds) and those that are also burning helium (period spacing ~ 100 to 300 seconds).  相似文献   
9.
Although immune mechanisms can suppress tumour growth, tumours establish potent, overlapping mechanisms that mediate immune evasion. Emerging evidence suggests a link between angiogenesis and the tolerance of tumours to immune mechanisms. Hypoxia, a condition that is known to drive angiogenesis in tumours, results in the release of damage-associated pattern molecules, which can trigger the rejection of tumours by the immune system. Thus, the counter-activation of tolerance mechanisms at the site of tumour hypoxia would be a crucial condition for maintaining the immunological escape of tumours. However, a direct link between tumour hypoxia and tolerance through the recruitment of regulatory cells has not been established. We proposed that tumour hypoxia induces the expression of chemotactic factors that promote tolerance. Here we show that tumour hypoxia promotes the recruitment of regulatory T (T(reg)) cells through induction of expression of the chemokine CC-chemokine ligand 28 (CCL28), which, in turn, promotes tumour tolerance and angiogenesis. Thus, peripheral immune tolerance and angiogenesis programs are closely connected and cooperate to sustain tumour growth.  相似文献   
10.
Angelaki DE  Shaikh AG  Green AM  Dickman JD 《Nature》2004,430(6999):560-564
A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号