首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   0篇
系统科学   1篇
教育与普及   1篇
现状及发展   38篇
研究方法   9篇
综合类   66篇
自然研究   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2008年   2篇
  2007年   8篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  2000年   8篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1984年   2篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   5篇
  1972年   4篇
  1971年   4篇
  1970年   2篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
  1964年   1篇
  1957年   2篇
  1955年   1篇
  1954年   1篇
排序方式: 共有117条查询结果,搜索用时 31 毫秒
1.
Neurofibromatosis type I (NF1) is one of the most common single-gene disorders that causes learning deficits in humans. Mice carrying a heterozygous null mutation of the Nfl gene (Nfl(+/-) show important features of the learning deficits associated with NF1 (ref. 2). Although neurofibromin has several known properties and functions, including Ras GTPase-activating protein activity, adenylyl cyclase modulation and microtubule binding, it is unclear which of these are essential for learning in mice and humans. Here we show that the learning deficits of Nf1(+/-) mice can be rescued by genetic and pharmacological manipulations that decrease Ras function. We also show that the Nf1(+/-) mice have increased GABA (gamma-amino butyric acid)-mediated inhibition and specific deficits in long-term potentiation, both of which can be reversed by decreasing Ras function. Our results indicate that the learning deficits associated with NF1 may be caused by excessive Ras activity, which leads to impairments in long-term potentiation caused by increased GABA-mediated inhibition. Our findings have implications for the development of treatments for learning deficits associated with NF1.  相似文献   
2.
Pineal gland changes of rats exposed to heat   总被引:1,自引:0,他引:1  
  相似文献   
3.
Summary The low temperature EPR spectrum of a quickly reacted mixture of oxyhemoglobin and phenylhydrazine was studied. With the use of a computer, the spectral contribution of methemoglobin in the region of g=2 was subtracted. The remaining spectrum was that of an axial free radical (g=2.00, g=2.06) having the magnetic parameters of superoxide anion. In the presence of superoxide dismutase, this axial radical was not seen, confirming that superoxide anion is indeed generated by the reaction.The portion of this investigation carried out at the Albert Einstein College of Medicine was supported in part by US Public Health Service Research Grant HL-93399 from the Heart and Lung Institute and by National Institute Contract Nol-CP-55606 to J.P. This is communication No. 378 from the Joan and Lester Avnet Institute of Molecular Biology.Predoctoral fellow in the Medical Scientist Training Program (United States Public Health Service Grant 5-TO-5-GM 01669-12) at the New York University School of Medicine.Recipient of a grant-in-aid from the New York Heart Association.  相似文献   
4.
One central, and yet unsolved, question in evolutionary biology is the relationship between the genetic variants segregating within species and the causes of morphological differences between species. The classic neo-darwinian view postulates that species differences result from the accumulation of small-effect changes at multiple loci. However, many examples support the possible role of larger abrupt changes in the expression of developmental genes in morphological evolution. Although this evidence might be considered a challenge to a neo-darwinian micromutationist view of evolution, there are currently few examples of the actual genes causing morphological differences between species. Here we examine the genetic basis of a trichome pattern difference between Drosophila species, previously shown to result from the evolution of a single gene, shavenbaby (svb), probably through cis-regulatory changes. We first identified three distinct svb enhancers from D. melanogaster driving reporter gene expression in partly overlapping patterns that together recapitulate endogenous svb expression. All three homologous enhancers from D. sechellia drive expression in modified patterns, in a direction consistent with the evolved svb expression pattern. To test the influence of these enhancers on the actual phenotypic difference, we conducted interspecific genetic mapping at a resolution sufficient to recover multiple intragenic recombinants. This functional analysis revealed that independent genetic regions upstream of svb that overlap the three identified enhancers are collectively required to generate the D. sechellia trichome pattern. Our results demonstrate that the accumulation of multiple small-effect changes at a single locus underlies the evolution of a morphological difference between species. These data support the view that alleles of large effect that distinguish species may sometimes reflect the accumulation of multiple mutations of small effect at select genes.  相似文献   
5.
6.
Wapinski I  Pfeffer A  Friedman N  Regev A 《Nature》2007,449(7158):54-61
Gene duplication and loss is a powerful source of functional innovation. However, the general principles that govern this process are still largely unknown. With the growing number of sequenced genomes, it is now possible to examine these events in a comprehensive and unbiased manner. Here, we develop a procedure that resolves the evolutionary history of all genes in a large group of species. We apply our procedure to seventeen fungal genomes to create a genome-wide catalogue of gene trees that determine precise orthology and paralogy relations across these species. We show that gene duplication and loss is highly constrained by the functional properties and interacting partners of genes. In particular, stress-related genes exhibit many duplications and losses, whereas growth-related genes show selection against such changes. Whole-genome duplication circumvents this constraint and relaxes the dichotomy, resulting in an expanded functional scope of gene duplication. By characterizing the functional fate of duplicate genes we show that duplicated genes rarely diverge with respect to biochemical function, but typically diverge with respect to regulatory control. Surprisingly, paralogous modules of genes rarely arise, even after whole-genome duplication. Rather, gene duplication may drive the modularization of functional networks through specialization, thereby disentangling cellular systems.  相似文献   
7.
Receptor for AGE (RAGE) is a member of the immunoglobulin superfamily that engages distinct classes of ligands. The biology of RAGE is driven by the settings in which these ligands accumulate, such as diabetes, inflammation, neurodegenerative disorders and tumors. In this review, we discuss the context of each of these classes of ligands, including advance glycation end-products, amyloid beta peptide and the family of beta sheet fibrils, S100/calgranulins and amphoterin. Implications for the role of these ligands interacting with RAGE in homeostasis and disease will be considered.  相似文献   
8.
Stern SA  Weissman PR 《Nature》2001,409(6820):589-591
The Oort cloud of comets was formed by the ejection of icy planetesimals from the region of giant planets--Jupiter, Saturn, Uranus and Neptune--during their formation. Dynamical simulations have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 10(4) to 10(5) AU from the Sun (1 AU is the average Earth-Sun distance). All of the Oort cloud models constructed until now simulate its formation using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed.  相似文献   
9.
Lendvai B  Stern EA  Chen B  Svoboda K 《Nature》2000,404(6780):876-881
Do changes in neuronal structure underlie cortical plasticity? Here we used time-lapse two-photon microscopy of pyramidal neurons in layer 2/3 of developing rat barrel cortex to image the structural dynamics of dendritic spines and filopodia. We found that these protrusions were highly motile: spines and filopodia appeared, disappeared or changed shape over tens of minutes. To test whether sensory experience drives this motility we trimmed whiskers one to three days before imaging. Sensory deprivation markedly (approximately 40%) reduced protrusive motility in deprived regions of the barrel cortex during a critical period around postnatal days (P)11-13, but had no effect in younger (P8-10) or older (P14-16) animals. Unexpectedly, whisker trimming did not change the density, length or shape of spines and filopodia. However, sensory deprivation during the critical period degraded the tuning of layer 2/3 receptive fields. Thus sensory experience drives structural plasticity in dendrites, which may underlie the reorganization of neural circuits.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号