首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   6篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 187 毫秒
1
1.
创新能力是一个人全面发展的综合能力,是具有发展性、创见性和开拓性的能力.高等数学是培养学生理性思维和思辩能力的重要载体,是开发大学生潜在能动性和创造力的重要基础.但目前高等数学的教学模式还不能适应高等教育迅速发展的形势和21世纪对创新人才的需要,故必须进行教学模式的改革.  相似文献   
2.
利用分子动力学模拟和色谱分析的方法研究了葛根素、大豆甙和大豆苷元在β-环糊精配基键合聚甲基丙烯酸缩水甘油酯整体柱上的分离识别机理。分子模拟结果显示,β-环糊精与客体分子的结合能越大,β-环糊精与客体小分子的结合作用越大,形成的包合物相对越稳定,则在色谱分离中客体分子在固定相上的保留因子越大,在洗脱顺序中表现为后洗脱出来。通过模拟计算β-环糊精与客体分子的结合能和氢键作用的大小,可以成功地预测客体小分子在β-环糊精配基整体柱上的保留行为和洗脱顺序。利用质量作用模型,通过改变色谱流动相中添加剂的浓度,证明了葛根素、大豆甙和大豆苷元在β-环糊精配基整体柱上的保留符合氢键和疏水作用共存的混合作用模式。  相似文献   
3.
A total of 14 surface snow (0-10 cm) samples were collected along the climbing route (6500-8844 m a.s.h) on the northern slope of Mt. Qomolangma in May, 2005. Analysis of elemental concentrations in these samples showed that there are no clear trends for element variations with elevation due to redistribution of surface snow by strong winds during spring. In addition, local crustal aerosol inputs also have an influence on elemental composition of surface snow. Comparison between elemental concentration datasets of 2005 and 1997 indicated that data from 2005 were of higher quality. Elemental concentrations (especially for heavy metals) at Mt. Qomolangma are comparable with polar sites, and far lower than large cities. This indicates that anthropogenic activities and heavy metal pollution have little effect on the Mt. Qomolangma atmospheric environment, which can be representative of the background atmospheric environment.  相似文献   
4.
Bacterial abundance in surface snow between 6600 and 8000 m a.s.l. on the northern slope of Mt. Ev- erest was investigated by flow cytometry. Bacterial diversity in serac ice at 6000 m a.s.l., glacier melt- water at 6350 m, and surface snow at 6600 m a.s.l. was examined by constructing a 16S rRNA gene clone library. Bacterial abundance in snow was higher than that in the Antarctic but similar to other mountain regions in the world. Bacterial abundance in surface snow increased with altitude but showed no correlation with chemical parameters. Bacteria in the cryosphere on Mt. Everest were closely related to those isolated from soil, aquatic environments, plants, animals, humans and other frozen environ- ments. Bacterial community structures in major habitats above 6000 m were variable. The Cyto- phaga-Flavobacterium-Bacteroides (CFB) group absolutely dominated in glacial meltwater, while β-Proteobacteria and the CFB group dominated in serac ice, and β-Proteobacteria and Actinobacteria dominated in surface snow. The remarkable differences among the habitats were most likely due to the bacterial post-deposition changes during acclimation processes.  相似文献   
5.
Graphite oxide (GO)/polypyrrole (PPy) nanocomposites (GPYs) were synthesized using in situ polymerization.The effect of the feeding ratios of pyrrole and GO on the structure and electrochemical performances of GPYs was investigated.The structure was characterized via Fourier-transform infrared spectroscopy,scanning electron microscopy,transmission electron microscopy and X-ray diffraction.The electrochemical performance was characterized via cyclic voltammetry,galvanostatic charge-discharge and electrochemical impedance spectroscopy.The results indicate that the more pyrrole is added to GO (with GO concentrations of 20% and 50%),the more agglomeration of both PPy and GO layers occurs.This is detrimental to the capacitance utilization of PPy.When the feeding ratio of GO:pyrrole is 80:20,PPys with nanofibrils are dispersed homogenously in/on the exfoliated layer of GO and the conductivity is enhanced.The capacitance utilization of PPy in a composite with a GO concentration of 80% (383 F/g) is higher than that of pure PPy (201 F/g),which indicates the presence of a synergistic effect between GO and PPy.  相似文献   
6.
Gao  Jing  Tian  LiDe  Liu  YongQin  Gong  TongLiang 《科学通报(英文版)》2009,54(16):2758-2765
Given the potential use of stable isotope in the paleoclimate reconstruction from lacustrine records as well as in the local hydrology cycle, it is crucial to understand the processes of stable isotope evolution in catchment in the Tibetan Plateau region. Here we present a detailed study on the water oxygen isotope based on 2 years observation including precipitation, river water and lake water in the Yamzho Lake, south of the Tibetan Plateau. Temporal variation of local precipitation 5180 shows an apparent "monsoon cycle". In monsoon season, 5180 in waters is lower. In non-monsoon season, δ^18O in precipitation and lake water is higher and higher river δ^18O exists in spring, probably reflecting the effect of land surface evaporation, together with the higher δ^18O values in spring precipitation. It is also found that the surface lake water δ^18O varies seasonally and annually. The lower lake water δ^18O in the late summer is apparently related to the summer monsoon precipitation. The mean δ^18O value of lake water in 2007 is 1.2‰ higher than that in 2004, probably due to the less monsoon precipitation in summer of 2007, as can be confirmed from the precipitation data at the Langkazi meteorological data. It is also found that an obvious shift of vertical lake water δ^18O reflects the fast mixture of lake water. δ^18O values of lake water are over 10‰ higher than those of precipitation and river water in this region due to the evaporation fractionation. The modeled results show that the evaporation process of the lake water is sensitive to relative humidity, and the present lake water δ^18O reflects a relative humidity of 51% in the Yamzho Lake. It shows that the lake will take 30.5 years to reach present lake water δ^18O given a large shift in the input water δ^18O. The modeled results also reveal that surface lake water temperature and inflow δ^18O have slight effect on the isotopic balance process of lake water in the Yamzho Lake.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号