首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
现状及发展   1篇
研究方法   1篇
综合类   11篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1977年   1篇
  1967年   1篇
排序方式: 共有13条查询结果,搜索用时 62 毫秒
1.
14-3-3 proteins are crucial in a wide variety of cellular responses including cell cycle progression, DNA damage checkpoints and apoptosis. One particular 14-3-3 isoform, sigma, is a p53-responsive gene, the function of which is frequently lost in human tumours, including breast and prostate cancers as a result of either hypermethylation of the 14-3-3sigma promoter or induction of an oestrogen-responsive ubiquitin ligase that specifically targets 14-3-3sigma for proteasomal degradation. Loss of 14-3-3sigma protein occurs not only within the tumours themselves but also in the surrounding pre-dysplastic tissue (so-called field cancerization), indicating that 14-3-3sigma might have an important tumour suppressor function that becomes lost early in the process of tumour evolution. The molecular basis for the tumour suppressor function of 14-3-3sigma is unknown. Here we report a previously unknown function for 14-3-3sigma as a regulator of mitotic translation through its direct mitosis-specific binding to a variety of translation/initiation factors, including eukaryotic initiation factor 4B in a stoichiometric manner. Cells lacking 14-3-3sigma, in marked contrast to normal cells, cannot suppress cap-dependent translation and do not stimulate cap-independent translation during and immediately after mitosis. This defective switch in the mechanism of translation results in reduced mitotic-specific expression of the endogenous internal ribosomal entry site (IRES)-dependent form of the cyclin-dependent kinase Cdk11 (p58 PITSLRE), leading to impaired cytokinesis, loss of Polo-like kinase-1 at the midbody, and the accumulation of binucleate cells. The aberrant mitotic phenotype of 14-3-3sigma-depleted cells can be rescued by forced expression of p58 PITSLRE or by extinguishing cap-dependent translation and increasing cap-independent translation during mitosis by using rapamycin. Our findings show how aberrant mitotic translation in the absence of 14-3-3sigma impairs mitotic exit to generate binucleate cells and provides a potential explanation of how 14-3-3sigma-deficient cells may progress on the path to aneuploidy and tumorigenesis.  相似文献   
2.
Nucleotide sequence of the rat skeletal muscle actin gene   总被引:56,自引:0,他引:56  
R Zakut  M Shani  D Givol  S Neuman  D Yaffe  U Nudel 《Nature》1982,298(5877):857-859
The actins constitute a family of highly conserved proteins found in all eukaryotic cells. Their conservation through a very wide range of taxonomic groups and the existence of tissue-specific isoforms make the actin genes very interesting for the study of the evolution of genes and their controlling elements. On the basis of amino acid sequence data, at least six different mammalian actins have been identified (skeletal muscle, cardiac muscle, two smooth muscle actins and the cytoplasmic beta- and gamma-actins). Rat spleen DNA digested by the EcoRI restriction enzyme contains at least 12 different fragments with actin-like sequences but only one which hybridized, in very stringent conditions, with the skeletal muscle cloned cDNA probe. Here we describe the sequence of the actin gene in that fragment. The nucleotide sequence codes for two amino acids, Met-Cys, preceding the known N-terminal Asp of the mature protein. There are five small introns in the coding region and a large intron in the 5'-untranslated region. Comparison of the structure of the rat skeletal muscle actin gene with available data on actin genes from other organisms shows that while the sequenced actin genes from Drosophila and yeast have introns at different locations, introns located at codons specifying amino acids 41, 121, 204 and 267 have been preserved at least from the echinoderm to the vertebrates. A similar analysis has been done by Davidson. An intron at codon 150 is common to a plant actin gene and the skeletal muscle acting gene.  相似文献   
3.
Russ WP  Lowery DM  Mishra P  Yaffe MB  Ranganathan R 《Nature》2005,437(7058):579-583
Protein sequences evolve through random mutagenesis with selection for optimal fitness. Cooperative folding into a stable tertiary structure is one aspect of fitness, but evolutionary selection ultimately operates on function, not on structure. In the accompanying paper, we proposed a model for the evolutionary constraint on a small protein interaction module (the WW domain) through application of the SCA, a statistical analysis of multiple sequence alignments. Construction of artificial protein sequences directed only by the SCA showed that the information extracted by this analysis is sufficient to engineer the WW fold at atomic resolution. Here, we demonstrate that these artificial WW sequences function like their natural counterparts, showing class-specific recognition of proline-containing target peptides. Consistent with SCA predictions, a distributed network of residues mediates functional specificity in WW domains. The ability to recapitulate natural-like function in designed sequences shows that a relatively small quantity of sequence information is sufficient to specify the global energetics of amino acid interactions.  相似文献   
4.
D Yaffe  O Saxel 《Nature》1977,270(5639):725-727
  相似文献   
5.
D Yaffe  D Gershon 《Nature》1967,215(5099):421-424
  相似文献   
6.
7.
Duchenne muscular dystrophy gene product is not identical in muscle and brain   总被引:30,自引:0,他引:30  
U Nudel  D Zuk  P Einat  E Zeelon  Z Levy  S Neuman  D Yaffe 《Nature》1989,337(6202):76-78
  相似文献   
8.
9.
Mechanisms mediating the inheritance of mitochondria are poorly understood, but recent studies with the yeastsSaccharomyces cerevisiae andSchizosaccharomyces pombe have begun to identify components that facilitate this essential process. These components have been identified through the analysis of conditional yeast mutants that display aberrant mitochondrial distribution at restrictive conditions. The analysis of these mutants has uncovered several novel proteins that are localized either to cytoskeletal structures or to the mitochondria themselves. Many mitochondrial inheritance mutants also show altered mitochondrial morphology and defects in maintenance of the mitochondrial genome. Although some inheritance components and mechanisms appear to function specifically in certain types of cells, other conserved proteins are likely to mediate mitochondrial behavior in all eukaryotic cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号