首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
现状及发展   1篇
综合类   14篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1996年   1篇
  1987年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
Conclusions On the basis of the high prevalence of circulating HCV found with both HCV PCRs, one might speculate that chances for transmission of HCV among IVDU occur more frequently than for transmission of HBV via similar routes. Conversely, instead of transmission through needle sharing or sexual contact, community acquisition of HCV infections might be of particular importance in IVDU.  相似文献   
3.
本文指出仪洪勋和Brosch G在具有三个判别的CM公共值的亚纯函数的唯一性定理中,关于对数函数的导数是整函数的推导,可以用指数函数求导的方法来证明.改进了仪洪勋和Brosch G关于重值与唯一性定理.  相似文献   
4.
Jamming phase diagram for attractive particles.   总被引:2,自引:0,他引:2  
V Trappe  V Prasad  L Cipelletti  P N Segre  D A Weitz 《Nature》2001,411(6839):772-775
  相似文献   
5.
Nanoscale or colloidal particles are important in many realms of science and technology. They can dramatically change the properties of materials, imparting solid-like behaviour to a wide variety of complex fluids. This behaviour arises when particles aggregate to form mesoscopic clusters and networks. The essential component leading to aggregation is an interparticle attraction, which can be generated by many physical and chemical mechanisms. In the limit of irreversible aggregation, infinitely strong interparticle bonds lead to diffusion-limited cluster aggregation (DLCA). This is understood as a purely kinetic phenomenon that can form solid-like gels at arbitrarily low particle volume fraction. Far more important technologically are systems with weaker attractions, where gel formation requires higher volume fractions. Numerous scenarios for gelation have been proposed, including DLCA, kinetic or dynamic arrest, phase separation, percolation and jamming. No consensus has emerged and, despite its ubiquity and significance, gelation is far from understood-even the location of the gelation phase boundary is not agreed on. Here we report experiments showing that gelation of spherical particles with isotropic, short-range attractions is initiated by spinodal decomposition; this thermodynamic instability triggers the formation of density fluctuations, leading to spanning clusters that dynamically arrest to create a gel. This simple picture of gelation does not depend on microscopic system-specific details, and should thus apply broadly to any particle system with short-range attractions. Our results suggest that gelation-often considered a purely kinetic phenomenon-is in fact a direct consequence of equilibrium liquid-gas phase separation. Without exception, we observe gelation in all of our samples predicted by theory and simulation to phase-separate; this suggests that it is phase separation, not percolation, that corresponds to gelation in models for attractive spheres.  相似文献   
6.
Klaers J  Schmitt J  Vewinger F  Weitz M 《Nature》2010,468(7323):545-548
Bose-Einstein condensation (BEC)-the macroscopic ground-state accumulation of particles with integer spin (bosons) at low temperature and high density-has been observed in several physical systems, including cold atomic gases and solid-state quasiparticles. However, the most omnipresent Bose gas, blackbody radiation (radiation in thermal equilibrium with the cavity walls) does not show this phase transition. In such systems photons have a vanishing chemical potential, meaning that their number is not conserved when the temperature of the photon gas is varied; at low temperatures, photons disappear in the cavity walls instead of occupying the cavity ground state. Theoretical works have considered thermalization processes that conserve photon number (a prerequisite for BEC), involving Compton scattering with a gas of thermal electrons or photon-photon scattering in a nonlinear resonator configuration. Number-conserving thermalization was experimentally observed for a two-dimensional photon gas in a dye-filled optical microcavity, which acts as a 'white-wall' box. Here we report the observation of a Bose-Einstein condensate of photons in this system. The cavity mirrors provide both a confining potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped, massive bosons. The photons thermalize to the temperature of the dye solution (room temperature) by multiple scattering with the dye molecules. Upon increasing the photon density, we observe the following BEC signatures: the photon energies have a Bose-Einstein distribution with a massively populated ground-state mode on top of a broad thermal wing; the phase transition occurs at the expected photon density and exhibits the predicted dependence on cavity geometry; and the ground-state mode emerges even for a spatially displaced pump spot. The prospects of the observed effects include studies of extremely weakly interacting low-dimensional Bose gases and new coherent ultraviolet sources.  相似文献   
7.
Visualizing dislocation nucleation by indenting colloidal crystals   总被引:1,自引:0,他引:1  
Schall P  Cohen I  Weitz DA  Spaepen F 《Nature》2006,440(7082):319-323
The formation of dislocations is central to our understanding of yield, work hardening, fracture, and fatigue of crystalline materials. While dislocations have been studied extensively in conventional materials, recent results have shown that colloidal crystals offer a potential model system for visualizing their structure and dynamics directly in real space. Although thermal fluctuations are thought to play a critical role in the nucleation of these defects, it is difficult to observe them directly. Nano-indentation, during which a small tip deforms a crystalline film, is a common tool for introducing dislocations into a small volume that is initially defect-free. Here, we show that an analogue of nano-indentation performed on a colloidal crystal provides direct images of defect formation in real time and on the single particle level, allowing us to probe the effects of thermal fluctuations. We implement a new method to determine the strain tensor of a distorted crystal lattice and we measure the critical dislocation loop size and the rate of dislocation nucleation directly. Using continuum models, we elucidate the relation between thermal fluctuations and the applied strain that governs defect nucleation. Moreover, we estimate that although bond energies between particles are about fifty times larger in atomic systems, the difference in attempt frequencies makes the effects of thermal fluctuations remarkably similar, so that our results are also relevant for atomic crystals.  相似文献   
8.
Synthesis of the skeleton of the morphine molecule by mammalian liver   总被引:1,自引:0,他引:1  
C J Weitz  K F Faull  A Goldstein 《Nature》1987,330(6149):674-677
The possibility that morphine could be synthesized in animals has long been considered and a pathway in mammalian brain analogous to that in the opium poppy has been proposed. Substances have been detected in mammalian brain that are recognized by antisera raised against morphine. Recently we reported the presence of three such immunoreactive substances in bovine hypothalamus and adrenal, and in rat brain, and the definitive identification of two of them by gas chromatography-mass spectrometry as morphine and codeine. Incorporation of a labelled precursor has demonstrated the biosynthesis of morphine in the opium poppy from tyrosine-derived units (see Fig. 1). Intramolecular coupling of reticuline to form salutaridine is the critical step that generates the morphine skeleton (morphinan) and the stereochemistry of the morphinan series. We now report the conversion in vivo and in vitro of reticuline to salutaridine by rat liver, but this conversion is not detectable in rat brain and bovine adrenal. This is the first direct demonstration of the synthesis of a morphinan in an animal tissue and also supports the hypothesis that morphine and codeine in brain and adrenal are of endogenous origin.  相似文献   
9.
An effective gravitational temperature for sedimentation   总被引:1,自引:0,他引:1  
Segrè PN  Liu F  Umbanhowar P  Weitz DA 《Nature》2001,409(6820):594-597
The slow sedimentation of suspensions of solid particles in a fluid results in complex phenomena that are poorly understood. For a low volume fraction (phi) of particles, long-range hydrodynamic interactions result in surprising spatial correlations in the velocity fluctuations; these are reminiscent of turbulence, even though the Reynolds number is very low. At higher values of phi, the behaviour of sedimentation remains unclear; the upward back-flow of fluid becomes increasingly important, while collisions and crowding further complicate inter-particle interactions. Concepts from equilibrium statistical mechanics could in principle be used to describe the fluctuations and thereby provide a unified picture of sedimentation, but one essential ingredient--an effective temperature that provides a mechanism for thermalization--is missing. Here we show that the gravitational energy of fluctuations in particle number can act as an effective temperature. Moreover, we demonstrate that the high-phi behaviour is in fact identical to that at low phi, provided that the suspension viscosity and sedimentation velocity are scaled appropriately, and that the effects of particle packing are included.  相似文献   
10.
Nanometre- and micrometre-sized charged particles at aqueous interfaces are typically stabilized by a repulsive Coulomb interaction. If one of the phases forming the interface is a nonpolar substance (such as air or oil) that cannot sustain a charge, the particles will exhibit long-ranged dipolar repulsion; if the interface area is confined, mutual repulsion between the particles can induce ordering and even crystallization. However, particle ordering has also been observed in the absence of area confinement, suggesting that like-charged particles at interfaces can also experience attractive interactions. Interface deformations are known to cause capillary forces that attract neighbouring particles to each other, but a satisfying explanation for the origin of such distortions remains outstanding. Here we present quantitative measurements of attractive interactions between colloidal particles at an oil-water interface and show that the attraction can be explained by capillary forces that arise from a distortion of the interface shape that is due to electrostatic stresses caused by the particles' dipolar field. This explanation, which is consistent with all reports on interfacial particle ordering so far, also suggests that the attractive interactions might be controllable: by tuning the polarity of one of the interfacial fluids, it should be possible to adjust the electrostatic stresses of the system and hence the interparticle attractions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号