首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   0篇
系统科学   10篇
理论与方法论   1篇
现状及发展   77篇
研究方法   23篇
综合类   166篇
自然研究   14篇
  2022年   1篇
  2018年   4篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   29篇
  2010年   2篇
  2009年   3篇
  2008年   11篇
  2007年   12篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   13篇
  2002年   13篇
  2001年   13篇
  2000年   13篇
  1999年   7篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   7篇
  1982年   1篇
  1981年   4篇
  1980年   4篇
  1979年   8篇
  1978年   4篇
  1977年   6篇
  1976年   10篇
  1975年   7篇
  1974年   5篇
  1973年   6篇
  1972年   3篇
  1971年   9篇
  1970年   9篇
  1969年   2篇
  1968年   5篇
  1967年   6篇
  1966年   6篇
  1965年   3篇
  1963年   1篇
  1948年   1篇
排序方式: 共有291条查询结果,搜索用时 359 毫秒
1.
2.
Interferon-γ links ultraviolet radiation to melanomagenesis in mice   总被引:1,自引:0,他引:1  
Cutaneous malignant melanoma is a highly aggressive and frequently chemoresistant cancer, the incidence of which continues to rise. Epidemiological studies show that the major aetiological melanoma risk factor is ultraviolet (UV) solar radiation, with the highest risk associated with intermittent burning doses, especially during childhood. We have experimentally validated these epidemiological findings using the hepatocyte growth factor/scatter factor transgenic mouse model, which develops lesions in stages highly reminiscent of human melanoma with respect to biological, genetic and aetiological criteria, but only when irradiated as neonatal pups with UVB, not UVA. However, the mechanisms underlying UVB-initiated, neonatal-specific melanomagenesis remain largely unknown. Here we introduce a mouse model permitting fluorescence-aided melanocyte imaging and isolation following in vivo UV irradiation. We use expression profiling to show that activated neonatal skin melanocytes isolated following a melanomagenic UVB dose bear a distinct, persistent interferon response signature, including genes associated with immunoevasion. UVB-induced melanocyte activation, characterized by aberrant growth and migration, was abolished by antibody-mediated systemic blockade of interferon-γ (IFN-γ), but not type-I interferons. IFN-γ was produced by macrophages recruited to neonatal skin by UVB-induced ligands to the chemokine receptor Ccr2. Admixed recruited skin macrophages enhanced transplanted melanoma growth by inhibiting apoptosis; notably, IFN-γ blockade abolished macrophage-enhanced melanoma growth and survival. IFN-γ-producing macrophages were also identified in 70% of human melanomas examined. Our data reveal an unanticipated role for IFN-γ in promoting melanocytic cell survival/immunoevasion, identifying a novel candidate therapeutic target for a subset of melanoma patients.  相似文献   
3.
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world’s population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite–host cell interactions, forming the basis of the parasite’s cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.  相似文献   
4.
5.
Inositol 1,4,5-trisphosphate (InsP3) can stimulate skinned smooth and skeletal muscle to contract by initiating Ca2+ release from the sarcoplasmic reticulum. Whether this process is an integral component of the in vivo muscle activation mechanism was tested by releasing InsP3 rapidly within skinned muscle fibers of rabbit main pulmonary artery and frog semitendinosus. InsP3 was liberated on laser pulse photolysis of a photolabile but biologically inactive precursor of InsP3 termed caged InsP3. Caged InsP3 is a mixture of compounds in which InsP3 is esterified with 1(2-nitrophenyl)diazoethane (probably at the P4- or P5-position). Photochemical release of InsP3 induced a full contraction in both muscles at physiological free Mg2+ concentrations, but only in the smooth muscle were the InsP3 concentration (0.5 microM) and the activation rate compatible with the in vivo physiological response. Endogenous InsP3-specific phosphatase activity was present in smooth muscle and had about 35-fold greater activity than that in the skeletal-muscle preparation. Caged InsP3 was not susceptible to phosphatases in either preparation.  相似文献   
6.
Early treatment of acute HIV-1 infection followed by treatment interruptions has shown promise for enhancing immune control of infection. A subsequent loss of control, however, allows the correlates of protective immunity to be assessed. Here we show that sudden breakthrough of plasma viraemia occurred after prolonged immune containment in an individual infected with HIV-1 at a time when 25 distinct CD8+ T-cell epitopes in the viral proteins Gag, RT, Integrase, Env, Nef, Vpr, Vif and Rev were being targeted. Sequencing of the virus in plasma and cells showed that superinfection with a second clade-B virus was coincident with the loss of immune control. This sudden increase in viraemia was associated with a decline in half of the CD8+ T-cell responses. The declining CD8+ T-cell responses were coupled with sequence changes relative to the initial virus that resulted in impaired recognition. Our data show that HIV-1 superinfection can occur in the setting of a strong and broadly directed virus-specific CD8+ T-cell response. The lack of cross-protective immunity for closely related HIV-1 strains, despite persistent recognition of multiple CD8 epitopes, has important implications for public health and vaccine development.  相似文献   
7.
Proteolytic processing of the amyloid precursor protein (APP) generates amyloid beta (Abeta) peptide, which is thought to be causal for the pathology and subsequent cognitive decline in Alzheimer's disease. Cleavage by beta-secretase at the amino terminus of the Abeta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated carboxy-terminal fragment. Cleavage of the C-terminal fragment by gamma-secretase(s) leads to the formation of Abeta. The pathogenic mutation K670M671-->N670L671 at the beta-secretase cleavage site in APP, which was discovered in a Swedish family with familial Alzheimer's disease, leads to increased beta-secretase cleavage of the mutant substrate. Here we describe a membrane-bound enzyme activity that cleaves full-length APP at the beta-secretase cleavage site, and find it to be the predominant beta-cleavage activity in human brain. We have purified this enzyme activity to homogeneity from human brain using a new substrate analogue inhibitor of the enzyme activity, and show that the purified enzyme has all the properties predicted for beta-secretase. Cloning and expression of the enzyme reveals that human brain beta-secretase is a new membrane-bound aspartic proteinase.  相似文献   
8.
Mesolimbic dopamine-releasing neurons appear to be important in the brain reward system. One behavioural paradigm that supports this hypothesis is intracranial self-stimulation (ICS), during which animals repeatedly press a lever to stimulate their own dopamine-releasing neurons electrically. Here we study dopamine release from dopamine terminals in the nucleus accumbens core and shell in the brain by using rapid-responding voltammetric microsensors during electrical stimulation of dopamine cell bodies in the ventral tegmental area/substantia nigra brain regions. In rats in which stimulating electrode placement failed to elicit dopamine release in the nucleus accumbens, ICS behaviour was not learned. In contrast, ICS was acquired when stimulus trains evoked extracellular dopamine in either the core or the shell of the nucleus accumbens. In animals that could learn ICS, experimenter-delivered stimulation always elicited dopamine release. In contrast, extracellular dopamine was rarely observed during ICS itself. Thus, although activation of mesolimbic dopamine-releasing neurons seems to be a necessary condition for ICS, evoked dopamine release is actually diminished during ICS. Dopamine may therefore be a neural substrate for novelty or reward expectation rather than reward itself.  相似文献   
9.
Résumé L'octopamine est présente dans le tissue nerveus l'escargot,Helix aspersa. Elle a un effet fortement inhibitoire sur certains neurones. Ces neurones sont aussi sensibles à la dopamine et à la noradrénaline. Le mécanisme possible de l'action de l'octopamine est discuté.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号