首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
现状及发展   1篇
研究方法   2篇
综合类   29篇
  2011年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   6篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
MicroRNA-mediated conversion of human fibroblasts to neurons   总被引:2,自引:0,他引:2  
  相似文献   
2.
A novel type of cardiac calcium channel in ventricular cells   总被引:11,自引:0,他引:11  
B Nilius  P Hess  J B Lansman  R W Tsien 《Nature》1985,316(6027):443-446
Calcium influx is vital for several aspects of cardiac activity, so it is important to ask if heart cells possess a single or multiple types of Ca channel. Only one Ca channel type has been identified in patch-clamp studies of unitary current, despite suggestions to the contrary from whole-cell recordings in heart cells and unitary recordings from other cells. Here we describe a novel type of cardiac Ca channel with several properties that distinguish it from the hitherto-identified Ca channel in heart cells. Its conductance in isotonic Ba is small (8 pS), and is no larger in Ba than in Ca. It activates and inactivates at relatively negative potentials and remains functional long after patch excision. It is insensitive to dihydropyridines such as nimodipine and the Ca agonist Bay K 8644, and is more resistant to block by external Cd than the previously described type of cardiac Ca channel.  相似文献   
3.
R Malinow  R W Tsien 《Nature》1990,346(6280):177-180
Long-term potentiation (LTP) of synaptic transmission in the hippocampus is a widely studied model system for understanding the cellular mechanisms of memory. In region CA1, LTP is triggered postsynaptically by Ca2(+)-dependent activation of protein kinases, but the locus of persistent modification remains controversial. Statistical analysis of synaptic variability has been proposed as a means of settling this debate, although a major obstacle has been the poor signal-to-noise ratio of conventional intracellular recordings. We have applied the whole-cell voltage clamp technique to study synaptic transmission in conventional hippocampal slices (compare refs 28-30). Here we report that robust LTP can be recorded with much improved signal resolution and biochemical access to the postsynaptic cell. Prolonged dialysis of the postsynaptic cell blocks the triggering of LTP, with no effect on expression of LTP. The improved signal resolution unmasks a large trial-to-trial variability, reflecting the probabilistic nature of transmitter release. Changes in the synaptic variability, and a decrease in the proportion of synaptic failures during LTP, suggest that transmitter release is significantly enhanced.  相似文献   
4.
V L Lew  R Y Tsien  C Miner  R M Bookchin 《Nature》1982,298(5873):478-481
The physiological actions of Ca2+ as a trigger and second messenger depend on the maintenance of large inward resting Ca2+ gradients across the cell plasma membrane. An ATP-fuelled Ca-pump, originally discovered and still best characterized in human red cells, is now believed to mediate resting Ca2+ extrusion in most animal cells. However, even in red cells, the truly physiological pump-leak turnover rate and cytoplasmic free Ca2+ level are unknown. Previous estimates were only very imprecise upper limits because normal intact red cells have a minute total pool of exchangeable Ca of less than 1 mumol 1 cells; Ca fluxes could not be measured without artificially increasing that pool with ionophores or disrupting the membrane to incorporate Ca buffers. Both procedures leave the membrane considerably leakier than in intact cells. Here, we have increased the exchangeable Ca pool by non-disruptively loading a Ca-chelator into intact cells, using intracellular hydrolysis of a membrane-permeant ester. The trapped chelator made the free cytoplasmic calcium concentration, [Ca2+]i, an easily defined function of directly measurable total cell Ca. We were then able to establish the physiological steady-state [Ca2+]i and pump-leak turnover rate of fresh cells suspended in their own plasma. If [Ca2+]i was lowered below the normal resting level, the Ca pump rate decreased according to the square of [Ca2+]i, and the inward Ca leak increased. The increase in leak did not develop if the cells were depleted of ATP and ADP.  相似文献   
5.
A Malgaroli  R W Tsien 《Nature》1992,357(6374):134-139
Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quantal responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.  相似文献   
6.
7.
Persistent protein kinase activity underlying long-term potentiation   总被引:41,自引:0,他引:41  
R Malinow  D V Madison  R W Tsien 《Nature》1988,335(6193):820-824
Long-term potentiation (LTP) of synaptic transmission in the hippocampus is a much-studied example of synaptic plasticity. Although the role of N-methyl-D-aspartate (NMDA) receptors in the induction of LTP is well established, the nature of the persistent signal underlying this synaptic enhancement is unclear. Involvement of protein phosphorylation in LTP has been widely proposed, with protein kinase C (PKC) and calcium-calmodulin kinase type II (CaMKII) as leading candidates. Here we test whether the persistent signal in LTP is an enduring phosphoester bond, a long-lived kinase activator, or a constitutively active protein kinase by using H-7, which inhibits activated protein kinases and sphingosine, which competes with activators of PKC (ref. 17) and CaMKII (ref. 18). H-7 suppressed established LTP, indicating that the synaptic potentiation is sustained by persistent protein kinase activity rather than a stably phosphorylated substrate. In contrast, sphingosine did not inhibit established LTP, although it was effective when applied before tetanic stimulation. This suggests that persistent kinase activity is not maintained by a long-lived activator, but is effectively constitutive. Surprisingly, the H-7 block of LTP was reversible; evidently, the kinase directly underlying LTP remains activated even though its catalytic activity is interrupted indicating that such kinase activity does not sustain itself simply through continual autophosphorylation (see refs 9, 13, 15).  相似文献   
8.
C D Benham  R W Tsien 《Nature》1987,328(6127):275-278
Receptor-operated Ca2+ entry has been proposed as a signalling mechanism in many cells. Receptor-operated Ca2+ channels (ROCs) were first postulated in smooth muscle by Bolton, van Breemen and Somlyo and Somlyo, but recordings of directly ligand-gated Ca2+ current are lacking. Here we describe receptor-operated Ca2+ current evoked in arterial smooth muscle cells by ATP, a sympathetic neurotransmitter. ATP activates channels with approximately 3:1 selectivity for Ca2+ over Na+ at near-physiological concentrations and with a unitary conductance of approximately 5 pS in 110 mM Ca2+ or Ba2+. The channels can be opened even at very negative potentials and resist inhibition by cadmium or nifedipine, unlike voltage-gated Ca2+ channels; they are not blocked by Mg2+, unlike NMDA (N-methyl-D-aspartate)-activated channels; they are directly activated by ligand, without involvement of readily diffusible second messengers, unlike cation channels in neutrophils and T lymphocytes. Thus, the ATP-activated channels provide a distinct mechanism for excitatory synaptic current and Ca2+ entry in smooth muscle.  相似文献   
9.
Visualizing the mechanical activation of Src   总被引:1,自引:0,他引:1  
Wang Y  Botvinick EL  Zhao Y  Berns MW  Usami S  Tsien RY  Chien S 《Nature》2005,434(7036):1040-1045
The mechanical environment crucially influences many cell functions. However, it remains largely mysterious how mechanical stimuli are transmitted into biochemical signals. Src is known to regulate the integrin-cytoskeleton interaction, which is essential for the transduction of mechanical stimuli. Using fluorescent resonance energy transfer (FRET), here we develop a genetically encoded Src reporter that enables the imaging and quantification of spatio-temporal activation of Src in live cells. We introduced a local mechanical stimulation to human umbilical vein endothelial cells (HUVECs) by applying laser-tweezer traction on fibronectin-coated beads adhering to the cells. Using the Src reporter, we observed a rapid distal Src activation and a slower directional wave propagation of Src activation along the plasma membrane. This wave propagated away from the stimulation site with a speed (mean +/- s.e.m.) of 18.1 +/- 1.7 nm s(-1). This force-induced directional and long-range activation of Src was abolished by the disruption of actin filaments or microtubules. Our reporter has thus made it possible to monitor mechanotransduction in live cells with spatio-temporal characterization. We find that the transmission of mechanically induced Src activation is a dynamic process that directs signals via the cytoskeleton to spatial destinations.  相似文献   
10.
D A Williams  K E Fogarty  R Y Tsien  F S Fay 《Nature》1985,318(6046):558-561
Calcium is believed to control a variety of cellular processes, often with a high degree of spatial and temporal precision. For a cell to use Ca2+ in this manner, mechanisms must exist for controlling the ion in a localized fashion. We have now gained insight into such mechanisms from studies which measured Ca2+ in single living cells with high resolution using a digital imaging microscope and the highly fluorescent Ca2+-sensitive dye, Fura-2. Levels of Ca2+ in the cytoplasm, nucleus and sarcoplasmic reticulum (SR) are clearly different. Free [Ca2+] in the nucleus and SR was greater than in the cytoplasm and these gradients were abolished by Ca2+ ionophores. When external Ca2+ was raised above normal in the absence of ionophores, free cytoplasmic Ca2+ increased but nuclear Ca2+ did not. Thus, nuclear [Ca2+] appears to be regulated independently of cytoplasmic [Ca2+] by gating mechanisms in the nuclear envelope. The observed regulation of intranuclear Ca2+ in these contractile cells may thus be seen as a way to prevent fluctuation in Ca2+-linked nuclear processes during the rise in cytoplasmic [Ca2+] which triggers contraction. The approach described here offers the opportunity of following changes in Ca2+ in cellular compartments in response to a wide range of stimuli, allowing new insights into the role of local changes in Ca2+ in the regulation of cell function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号