首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
现状及发展   2篇
研究方法   1篇
综合类   21篇
自然研究   5篇
  2015年   1篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1970年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有29条查询结果,搜索用时 78 毫秒
1.
Attribution of observed surface humidity changes to human influence   总被引:3,自引:0,他引:3  
Willett KM  Gillett NP  Jones PD  Thorne PW 《Nature》2007,449(7163):710-712
Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.  相似文献   
2.
Described is Sclerocactus blainei Welsh & Thorne, sp. nov. from Nye County, Nevada.     相似文献   
3.
4.
A variety of viral-based and immune cell therapies have been proposed for use in the treatment of cancer. One possible approach to improve the effectiveness of these biological agents may be to combine them such that we can take advantage of natural immune cell-pathogen relationships. Here we discuss these potential approaches with particular emphasis on the use of immune cells as carrier vehicles to deliver viral therapies to the tumor. Received 15 December 2006; received after revision 28 January 2007; accepted 5 March 2007  相似文献   
5.
6.
7.
Iron formations are chemical sedimentary rocks comprising layers of iron-rich and silica-rich minerals whose deposition requires anoxic and iron-rich (ferruginous) sea water. Their demise after the rise in atmospheric oxygen by 2.32?billion years (Gyr) ago has been attributed to the removal of dissolved iron through progressive oxidation or sulphidation of the deep ocean. Therefore, a sudden return of voluminous iron formations nearly 500?million years later poses an apparent conundrum. Most late Palaeoproterozoic iron formations are about 1.88?Gyr old and occur in the Superior region of North America. Major iron formations are also preserved in Australia, but these were apparently deposited after the transition to a sulphidic ocean at 1.84?Gyr ago that should have terminated iron formation deposition, implying that they reflect local marine conditions. Here we date zircons in tuff layers to show that iron formations in the Frere Formation of Western Australia are about 1.88?Gyr old, indicating that the deposition of iron formations from two disparate cratons was coeval and probably reflects global ocean chemistry. The sudden reappearance of major iron formations at 1.88?Gyr ago--contemporaneous with peaks in global mafic-ultramafic magmatism, juvenile continental and oceanic crust formation, mantle depletion and volcanogenic massive sulphide formation--suggests deposition of iron formations as a consequence of major mantle activity and rapid crustal growth. Our findings support the idea that enhanced submarine volcanism and hydrothermal activity linked to a peak in mantle melting released large volumes of ferrous iron and other reductants that overwhelmed the sulphate and oxygen reservoirs of the ocean, decoupling atmospheric and seawater redox states, and causing the return of widespread ferruginous conditions. Iron formations formed on clastic-starved coastal shelves where dissolved iron upwelled and mixed with oxygenated surface water. The disappearance of iron formations after this event may reflect waning mafic-ultramafic magmatism and a diminished flux of hydrothermal iron relative to seawater oxidants.  相似文献   
8.
H V Thorne  J Evans  D Warden 《Nature》1968,219(5155):728-730
  相似文献   
9.
10.
Ammon CJ  Kanamori H  Lay T 《Nature》2008,451(7178):561-565
Temporal variations of the frictional resistance on subduction-zone plate boundary faults associated with the stick-slip cycle of large interplate earthquakes are thought to modulate the stress regime and earthquake activity within the subducting oceanic plate. Here we report on two great earthquakes that occurred near the Kuril islands, which shed light on this process and demonstrate the enhanced seismic hazard accompanying triggered faulting. On 15 November 2006, an event of moment magnitude 8.3 ruptured the shallow-dipping plate boundary along which the Pacific plate descends beneath the central Kuril arc. The thrust ruptured a seismic gap that previously had uncertain seismogenic potential, although the earlier occurrence of outer-rise compressional events had suggested the presence of frictional resistance. Within minutes of this large underthrusting event, intraplate extensional earthquakes commenced in the outer rise region seaward of the Kuril trench, and on 13 January 2007, an event of moment magnitude 8.1 ruptured a normal fault extending through the upper portion of the Pacific plate, producing one of the largest recorded shallow extensional earthquakes. This energetic earthquake sequence demonstrates the stress transfer process within the subducting lithosphere, and the distinct rupture characteristics of these great earthquakes illuminate differences in seismogenic properties and seismic hazard of such interplate and intraplate faults.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号