首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   6篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2000年   3篇
排序方式: 共有6条查询结果,搜索用时 203 毫秒
1
1.
Bao H  Campbell DA  Bockheim JG  Thiemens MH 《Nature》2000,407(6803):499-502
The dry valleys of Antarctica are some of the oldest terrestrial surfaces on the Earth. Despite much study of soil weathering and development, ecosystem dynamics and the occurrence of life in these extreme environments, the reasons behind the exceptionally high salt content of the dry-valley soils have remained uncertain. In particular, the origins of sulphate are still controversial; proposed sources include wind-blown sea salt, chemical weatherings, marine incursion, hydrothermal processes and oxidation of biogenic sulphur in the atmosphere. Here we report measurements of delta18O and delta17O values of sulphates from a range of dry-valley soils. These sulphates all have a large positive anomaly of 17O, of up to 3.4/1000. This suggests that Antarctic sulphate comes not just from sea salt (which has no anomaly of 17O) but also from the atmospheric oxidation of reduced gaseous sulphur compounds, the only known process that can generate the observed 17O anomaly. This source is more prominent in high inland soils, suggesting that the distributions of sulphate are largely explained by differences in particle size and transport mode which exist between sea-salt aerosols and aerosols formed from biogenic sulphur emission.  相似文献   
2.
Anomalous 17O compositions in massive sulphate deposits on the Earth   总被引:5,自引:0,他引:5  
Bao H  Thiemens MH  Farquhar J  Campbell DA  Lee CC  Heine K  Loope DB 《Nature》2000,406(6792):176-178
The variation of delta 18O that results from nearly all physical, biological and chemical processes on the Earth is approximately twice as large as the variation of delta 17O. This so-called 'mass-dependent' fractionation is well documented in terrestrial minerals. Evidence for 'mass-independent' fractionation (delta 17O = delta 17O-0.52 delta 18O), where deviation from this tight relationship occurs, has so far been found only in meteoritic material and a few terrestrial atmospheric substances. In the rock record it is thought that oxygen isotopes have followed a mass-dependent relationship for at least the past 3.7 billion years, and no exception to this has been encountered for terrestrial solids. Here, however, we report oxygen-isotope values of two massive sulphate mineral deposits, which formed in surface environments on the Earth but show large isotopic anomalies (delta 17O up to 4.6%). These massive sulphate deposits are gypcretes from the central Namib Desert and the sulphate-bearing Miocene volcanic ash-beds in North America. The source of this isotope anomaly might be related to sulphur oxidation reactions in the atmosphere and therefore enable tracing of such oxidation. These findings also support the possibility of a chemical origin of variable isotope anomalies on other planets, such as Mars.  相似文献   
3.
In the modeling of microsegregation, the partition coefficient is usually calculated using data from the equilibrium phase diagrams. The aim of this study was to experimentally and theoretically analyze the partition coefficient in binary aluminum-copper alloys. The samples were analyzed by differential thermal analysis (DTA), which were melted and quenched from different temperatures during solidification. The mass fraction and composition of phases were measured by image processing and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) unit. These data were used to calculate as the experimental partition coefficients with four different methods. The experimental and equilibrium partition coefficients were used to model the concentration profile in the primary phase. The modeling results show that the profiles calculated by the experimental partition coefficients are more consistent with the experimental profiles, compared to those calculated using the equilibrium partition coefficients.  相似文献   
4.
Surface plasmons are collective oscillations of electrons in metals or semiconductors that enable confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabrication, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium--graphene--is amenable to convenient tuning of its electronic and optical properties by varying the applied voltage. Here, using infrared nano-imaging, we show that common graphene/SiO(2)/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nanometres at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and the wavelength of these plasmons by varying the gate voltage. Using plasmon interferometry, we investigated losses in graphene by exploring real-space profiles of plasmon standing waves formed between the tip of our nano-probe and the edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merit of our tunable graphene devices surpass those of common metal-based structures.  相似文献   
5.
Dominguez G  Wilkins G  Thiemens MH 《Nature》2011,473(7345):70-73
Diffusion in condensed phases is a ubiquitous but poorly understood phenomenon. For example, chemical diffusion, which is the transport of matter associated with chemical concentration gradients (Fick's law), is treated as a separate process from thermal transport (the Soret effect), which is mass transport induced by temperature gradients. In the past few years, large variations in the proportions of isotopes of Mg, Ca, Fe, Si and O found in silicate melts subject to thermal gradients have been found, but no physical mechanism has been proposed. Here we present a model of diffusion in natural condensed systems that explains both the chemical and isotopic fractionation of Mg, Ca and Fe in high-temperature geochemical melts. Despite the high temperatures associated with these melts (T>1,000 °C), we find that consideration of the quantum-mechanical zero-point energy of diffusing species is essential for understanding diffusion at the isotopic level. Our model explains thermal and chemical mass transport as manifestations of the same underlying diffusion mechanism. This work promises to provide insights into mass-transport phenomena (diffusion and evaporation) and associated isotopic fractionations in a wide range of natural condensed systems, including the atmospheric water cycle, geological and geochemical systems and the early Solar System. This work might also be relevant to studies of mass transport in biological and nanotechnological condensed systems.  相似文献   
6.
Sulphur is abundant at the martian surface, yet its origin and evolution over time remain poorly constrained. This sulphur is likely to have originated in atmospheric chemical reactions, and so should provide records of the evolution of the martian atmosphere, the cycling of sulphur between the atmosphere and crust, and the mobility of sulphur in the martian regolith. Moreover, the atmospheric deposition of oxidized sulphur species could establish chemical potential gradients in the martian near-surface environment, and so provide a potential energy source for chemolithoautotrophic organisms. Here we present measurements of sulphur isotopes in oxidized and reduced phases from the SNC meteorites--the group of related achondrite meteorites believed to have originated on Mars--together with the results of laboratory photolysis studies of two important martian atmospheric sulphur species (SO2 and H2S). The photolysis experiments can account for the observed sulphur-isotope compositions in the SNC meteorites, and so identify a mechanism for producing large abiogenic 34S fractionations in the surface sulphur reservoirs. We conclude that the sulphur data from the SNC meteorites reflects deposition of oxidized sulphur species produced by atmospheric chemical reactions, followed by incorporation, reaction and mobilization of the sulphur within the regolith.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号