首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
现状及发展   1篇
研究方法   2篇
综合类   5篇
  2015年   1篇
  2011年   2篇
  2008年   1篇
  2006年   2篇
  2004年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The recovery of iron from the screw classifier overflow slimes by direct flotation was studied. The relative effectiveness of sodium silicates with different silica-to-soda mole ratios as depressants for silica and silicate bearing minerals was investigated. Silica-to-soda mole ratio and silicate dosage were found to have significant effect on the separation efficiency. The results show that an increase of Fe content in the concentrate is observed with concomitant reduction in SiO2 and Al2O3 levels when a particular type of sodium silicate at a proper dosage is used. The concentrate of 58.89wt% Fe, 4.68wt% SiO2, and 5.28wt% Al2O3 with the weight recovery of 38.74% and the metal recovery of 41.13% can be obtained from the iron ore slimes with 54.44wt% Fe, 6.72wt% SiO2, and 6.80wt% Al2O3, when Na2SiO3 with a silica-to-soda mole ratio of 2.19 is used as a depressant at a feed rate of 0.2 kg/t.  相似文献   
2.
3.
Understanding the mechanisms of evolution requires identification of the molecular basis of the multiple (pleiotropic) effects of specific adaptive mutations. We have characterized the pleiotropic effects on protein levels of an adaptive single-base pair substitution in the coding sequence of a signaling pathway gene in the bacterium Pseudomonas fluorescens SBW25. We find 52 proteomic changes, corresponding to 46 identified proteins. None of these proteins is required for the adaptive phenotype. Instead, many are found within specific metabolic pathways associated with fitness-reducing (that is, antagonistic) effects of the mutation. The affected proteins fall within a single coregulatory network. The mutation 'rewires' this network by drawing particular proteins into tighter coregulating relationships. Although these changes are specific to the mutation studied, the quantitatively altered proteins are also affected in a coordinated way in other examples of evolution to the same niche.  相似文献   
4.
Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30?days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (T(reg)) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with T(reg) cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. T(reg) cells seem to participate in creating a localized zone where HSPCs reside and where T(reg) cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.  相似文献   
5.
Identifying the sequences that direct the spatial and temporal expression of genes and defining their function in vivo remains a significant challenge in the annotation of vertebrate genomes. One major obstacle is the lack of experimentally validated training sets. In this study, we made use of extreme evolutionary sequence conservation as a filter to identify putative gene regulatory elements, and characterized the in vivo enhancer activity of a large group of non-coding elements in the human genome that are conserved in human-pufferfish, Takifugu (Fugu) rubripes, or ultraconserved in human-mouse-rat. We tested 167 of these extremely conserved sequences in a transgenic mouse enhancer assay. Here we report that 45% of these sequences functioned reproducibly as tissue-specific enhancers of gene expression at embryonic day 11.5. While directing expression in a broad range of anatomical structures in the embryo, the majority of the 75 enhancers directed expression to various regions of the developing nervous system. We identified sequence signatures enriched in a subset of these elements that targeted forebrain expression, and used these features to rank all approximately 3,100 non-coding elements in the human genome that are conserved between human and Fugu. The testing of the top predictions in transgenic mice resulted in a threefold enrichment for sequences with forebrain enhancer activity. These data dramatically expand the catalogue of human gene enhancers that have been characterized in vivo, and illustrate the utility of such training sets for a variety of biological applications, including decoding the regulatory vocabulary of the human genome.  相似文献   
6.
The DNA sequence and comparative analysis of human chromosome 5   总被引:1,自引:0,他引:1  
Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.  相似文献   
7.
Extended perfect human-rodent sequence identity of at least 200 base pairs (ultraconservation) is potentially indicative of evolutionary or functional uniqueness. We used a transgenic mouse assay to compare the embryonic enhancer activity of 231 noncoding ultraconserved human genome regions with that of 206 extremely conserved regions lacking ultraconservation. Developmental enhancers were equally prevalent in both populations, suggesting instead that ultraconservation identifies a small, functionally indistinct subset of similarly constrained cis-regulatory elements.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号