首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2007年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
Striemer CC  Gaborski TR  McGrath JL  Fauchet PM 《Nature》2007,445(7129):749-753
Commercial ultrafiltration and dialysis membranes have broad pore size distributions and are over 1,000 times thicker than the molecules they are designed to separate, leading to poor size cut-off properties, filtrate loss within the membranes, and low transport rates. Nanofabricated membranes have great potential in molecular separation applications by offering more precise structural control, yet transport is also limited by micrometre-scale thicknesses. This limitation can be addressed by a new class of ultrathin nanostructured membranes where the membrane is roughly as thick (approximately 10 nm) as the molecules being separated, but membrane fragility and complex fabrication have prevented the use of ultrathin membranes for molecular separations. Here we report the development of an ultrathin porous nanocrystalline silicon (pnc-Si) membrane using straightforward silicon fabrication techniques that provide control over average pore sizes from approximately 5 nm to 25 nm. Our pnc-Si membranes can retain proteins while permitting the transport of small molecules at rates an order of magnitude faster than existing materials, separate differently sized proteins under physiological conditions, and separate similarly sized molecules carrying different charges. Despite being only 15 nm thick, pnc-Si membranes that are free-standing over 40,000 microm2 can support a full atmosphere of differential pressure without plastic deformation or fracture. By providing efficient, low-loss macromolecule separations, pnc-Si membranes are expected to enable a variety of new devices, including membrane-based chromatography systems and both analytical and preparative microfluidic systems that require highly efficient separations.  相似文献   
2.
Effects of multiplicatioe noise in transient laser intensity are investigated theoretically. Analytic solutions are calculated through a reduced Fokker-Planck equation and the results with different pump parameters are discussed.  相似文献   
3.
A C3Cl-type(bcc)-semi-infinite ferrimagnet with a single-ion uniaxial anisotropy and a magnetic impurity layer is considered through combining Green‘s function theory with the transfer-mairx method.The effect of the anisotropy term and the impurity layer on surface spin wave specirum is discussed.The influence of the impurity layer‘s distance from the surface or surface spin woves is also concerned.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号