首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
现状及发展   1篇
综合类   2篇
  2011年   1篇
  2008年   1篇
  1976年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Role of Nef in primate lentiviral immunopathogenesis   总被引:1,自引:0,他引:1  
More than a decade ago it was established that intact nef genes are critical for efficient viral persistence and greatly accelerate disease progression in SIVmac-infected rhesus macaques and in HIV-1-infected humans. Subsequent studies established a striking number of Nef functions that evidently contribute to the maintenance of high viral loads associated with the development of immunodeficiency in the 'evolutionary-recent' human and the experimental macaque hosts. Recent data show that many Nef activities are conserved across different lineages of HIV and SIV. However, some differences also exist. For example, Nef alleles from most SIVs that do not cause disease in their natural monkey hosts, but not those of HIV-1 and its simian precursors, down-modulate TCR-CD3 to suppress T cell activation and programmed death. This evolutionary loss of a specific Nef function may contribute to the high virulence of HIV-1 in humans.  相似文献   
2.
3.
The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180 microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号