首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
研究方法   1篇
综合类   6篇
  2010年   1篇
  2006年   2篇
  2003年   2篇
  1999年   1篇
  1966年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana   总被引:21,自引:0,他引:21  
Arabidopsis thaliana (Arabidopsis) is unique among plant model organisms in having a small genome (130-140 Mb), excellent physical and genetic maps, and little repetitive DNA. Here we report the sequence of chromosome 2 from the Columbia ecotype in two gap-free assemblies (contigs) of 3.6 and 16 megabases (Mb). The latter represents the longest published stretch of uninterrupted DNA sequence assembled from any organism to date. Chromosome 2 represents 15% of the genome and encodes 4,037 genes, 49% of which have no predicted function. Roughly 250 tandem gene duplications were found in addition to large-scale duplications of about 0.5 and 4.5 Mb between chromosomes 2 and 1 and between chromosomes 2 and 4, respectively. Sequencing of nearly 2 Mb within the genetically defined centromere revealed a low density of recognizable genes, and a high density and diverse range of vestigial and presumably inactive mobile elements. More unexpected is what appears to be a recent insertion of a continuous stretch of 75% of the mitochondrial genome into chromosome 2.  相似文献   
2.
In the fungal phylum Ascomycota, the ability to cause disease in plants and animals has been gained and lost repeatedly during phylogenesis. In monocotyledonous barley, loss-of-function mlo alleles result in effective immunity against the Ascomycete Blumeria graminis f. sp. hordei, the causal agent of powdery mildew disease. However, mlo-based disease resistance has been considered a barley-specific phenomenon to date. Here, we demonstrate a conserved requirement for MLO proteins in powdery mildew pathogenesis in the dicotyledonous plant species Arabidopsis thaliana. Epistasis analysis showed that mlo resistance in A. thaliana does not involve the signaling molecules ethylene, jasmonic acid or salicylic acid, but requires a syntaxin, glycosyl hydrolase and ABC transporter. These findings imply that a common host cell entry mechanism of powdery mildew fungi evolved once and at least 200 million years ago, suggesting that within the Erysiphales (powdery mildews) the ability to cause disease has been a stable trait throughout phylogenesis.  相似文献   
3.
Global variation in copy number in the human genome   总被引:3,自引:0,他引:3  
Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.  相似文献   
4.
Sugar transporters for intercellular exchange and nutrition of pathogens   总被引:10,自引:0,他引:10  
Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.  相似文献   
5.
Identity of the "pink spot"   总被引:1,自引:0,他引:1  
C E Bell  A R Somerville 《Nature》1966,211(5056):1405-1406
  相似文献   
6.
Leptospirosis is a widely spread disease of global concern. Infection causes flu-like episodes with frequent severe renal and hepatic damage, such as haemorrhage and jaundice. In more severe cases, massive pulmonary haemorrhages, including fatal sudden haemoptysis, can occur. Here we report the complete genomic sequence of a representative virulent serovar type strain (Lai) of Leptospira interrogans serogroup Icterohaemorrhagiae consisting of a 4.33-megabase large chromosome and a 359-kilobase small chromosome, with a total of 4,768 predicted genes. In terms of the genetic determinants of physiological characteristics, the facultatively parasitic L. interrogans differs extensively from two other strictly parasitic pathogenic spirochaetes, Treponema pallidum and Borrelia burgdorferi, although similarities exist in the genes that govern their unique morphological features. A comprehensive analysis of the L. interrogans genes for chemotaxis/motility and lipopolysaccharide synthesis provides a basis for in-depth studies of virulence and pathogenesis. The discovery of a series of genes possibly related to adhesion, invasion and the haematological changes that characterize leptospirosis has provided clues about how an environmental organism might evolve into an important human pathogen.  相似文献   
7.
SNARE-protein-mediated disease resistance at the plant cell wall   总被引:2,自引:0,他引:2  
Failure of pathogenic fungi to breach the plant cell wall constitutes a major component of immunity of non-host plant species--species outside the pathogen host range--and accounts for a proportion of aborted infection attempts on 'susceptible' host plants (basal resistance). Neither form of penetration resistance is understood at the molecular level. We developed a screen for penetration (pen) mutants of Arabidopsis, which are disabled in non-host penetration resistance against barley powdery mildew, Blumeria graminis f. sp. hordei, and we isolated the PEN1 gene. We also isolated barley ROR2 (ref. 2), which is required for basal penetration resistance against B. g. hordei. The genes encode functionally homologous syntaxins, demonstrating a mechanistic link between non-host resistance and basal penetration resistance in monocotyledons and dicotyledons. We show that resistance in barley requires a SNAP-25 (synaptosome-associated protein, molecular mass 25 kDa) homologue capable of forming a binary SNAP receptor (SNARE) complex with ROR2. Genetic control of vesicle behaviour at penetration sites, and plasma membrane location of PEN1/ROR2, is consistent with a proposed involvement of SNARE-complex-mediated exocytosis and/or homotypic vesicle fusion events in resistance. Functions associated with SNARE-dependent penetration resistance are dispensable for immunity mediated by race-specific resistance (R) genes, highlighting fundamental differences between these two resistance forms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号