首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
Kondo insulator materials--such as CeRhAs, CeRhSb, YbB12, Ce3Bi4Pt3 and SmB6--are 3d, 4f and 5f intermetallic compounds that have attracted considerable interest in recent years. At high temperatures, they behave like metals. But as temperature is reduced, an energy gap opens in the conduction band at the Fermi energy and the materials become insulating. This contrasts with other f-electron compounds, which are metallic at all temperatures. The formation of the gap in Kondo insulators has been proposed to be a consequence of hybridization between the conduction band and the f-electron levels, giving a 'spin' gap. If this is indeed the case, metallic behaviour should be recovered when the gap is closed by changing external parameters, such as magnetic field or pressure. Some experimental evidence suggests that the gap can be closed in SmB6 (refs 5, 8) and YbB12 (ref. 9). Here we present specific-heat measurements of Ce3Bi4Pt3 in d.c. and pulsed magnetic fields up to 60 tesla. Numerical results and the analysis of our data using the Coqblin-Schrieffer model demonstrate unambiguously a field-induced insulator-to-metal transition.  相似文献   
2.
Plutonium is a metal of both technological relevance and fundamental scientific interest. Nevertheless, the electronic structure of plutonium, which directly influences its metallurgical properties, is poorly understood. For example, plutonium's 5f electrons are poised on the border between localized and itinerant, and their theoretical treatment pushes the limits of current electronic structure calculations. Here we extend the range of complexity exhibited by plutonium with the discovery of superconductivity in PuCoGa5. We argue that the observed superconductivity results directly from plutonium's anomalous electronic properties and as such serves as a bridge between two classes of spin-fluctuation-mediated superconductors: the known heavy-fermion superconductors and the high-T(c) copper oxides. We suggest that the mechanism of superconductivity is unconventional; seen in that context, the fact that the transition temperature, T(c) approximately 18.5 K, is an order of magnitude greater than the maximum seen in the U- and Ce-based heavy-fermion systems may be natural. The large critical current displayed by PuCoGa5, which comes from radiation-induced self damage that creates pinning centres, would be of technological importance for applied superconductivity if the hazardous material plutonium were not a constituent.  相似文献   
3.
With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.  相似文献   
4.
In the Bardeen-Cooper-Schrieffer theory of superconductivity, electrons form (Cooper) pairs through an interaction mediated by vibrations in the underlying crystal structure. Like lattice vibrations, antiferromagnetic fluctuations can also produce an attractive interaction creating Cooper pairs, though with spin and angular momentum properties different from those of conventional superconductors. Such interactions have been implicated for two disparate classes of materials--the copper oxides and a set of Ce- and U-based compounds. But because their transition temperatures differ by nearly two orders of magnitude, this raises the question of whether a common pairing mechanism applies. PuCoGa5 has a transition temperature intermediate between those classes and therefore may bridge these extremes. Here we report measurements of the nuclear spin-lattice relaxation rate and Knight shift in PuCoGa5, which demonstrate that it is an unconventional superconductor with properties as expected for antiferromagnetically mediated superconductivity. Scaling of the relaxation rates among all of these materials (a feature not exhibited by their Knight shifts) establishes antiferromagnetic fluctuations as a likely mechanism for their unconventional superconductivity and suggests that related classes of exotic superconductors may yet be discovered.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号