首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   6篇
  2019年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2000年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Two-dimensional gas of massless Dirac fermions in graphene   总被引:21,自引:0,他引:21  
Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schr?dinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.  相似文献   
2.
As first pointed out by Bardeen and Ginzburg in the early sixties, the amount of magnetic flux carried by vortices in superconducting materials depends on their distance from the sample edge, and can be smaller than one flux quantum, phi0 = h/2e (where h is Planck's constant and e is the electronic charge). In bulk superconductors, this reduction of flux becomes negligible at submicrometre distances from the edge, but in thin films the effect may survive much farther into the material. But the effect has not been observed experimentally, and it is often assumed that magnetic field enters type II superconductors in units of phi0. Here we measure the amount of flux introduced by individual vortices in a superconducting film, finding that the flux always differs substantially from phi0. We have observed vortices that carry as little as 0.001phi0, as well as 'negative vortices', whose penetration leads to the expulsion of magnetic field. We distinguish two phenomena responsible for non-quantized flux penetration: the finite-size effect and a nonlinear screening of the magnetic field due to the presence of a surface barrier. The latter effect has not been considered previously, but is likely to cause non-quantized penetration in most cases.  相似文献   
3.
The structure of suspended graphene sheets   总被引:17,自引:0,他引:17  
The recent discovery of graphene has sparked much interest, thus far focused on the peculiar electronic structure of this material, in which charge carriers mimic massless relativistic particles. However, the physical structure of graphene--a single layer of carbon atoms densely packed in a honeycomb crystal lattice--is also puzzling. On the one hand, graphene appears to be a strictly two-dimensional material, exhibiting such a high crystal quality that electrons can travel submicrometre distances without scattering. On the other hand, perfect two-dimensional crystals cannot exist in the free state, according to both theory and experiment. This incompatibility can be avoided by arguing that all the graphene structures studied so far were an integral part of larger three-dimensional structures, either supported by a bulk substrate or embedded in a three-dimensional matrix. Here we report on individual graphene sheets freely suspended on a microfabricated scaffold in vacuum or air. These membranes are only one atom thick, yet they still display long-range crystalline order. However, our studies by transmission electron microscopy also reveal that these suspended graphene sheets are not perfectly flat: they exhibit intrinsic microscopic roughening such that the surface normal varies by several degrees and out-of-plane deformations reach 1 nm. The atomically thin single-crystal membranes offer ample scope for fundamental research and new technologies, whereas the observed corrugations in the third dimension may provide subtle reasons for the stability of two-dimensional crystals.  相似文献   
4.
利用光纤光栅实现压力和温度同时测量   总被引:5,自引:0,他引:5  
结合光纤光栅弹簧管压力传感器的结构特点 ,在悬臂梁的上下两面分别粘贴两个应力和温度灵敏系数基本相同的光纤光栅 ,通过分别测量光纤光栅对的波长位移 ,实现了压力和温度的同时测量 ,压力和温度测量的分辨率分别为 0 .1 4 MPa和 0 .5℃ .  相似文献   
5.
 历史上,人类非常擅长于给各种各样的材料取名字或者给各种各样的时代取名字。人类已经经历了石器时代、青铜时代、铁器时代,一个需要提出的问题是:接下来要进入什么样的时代?未来如何界定人类现在所处的时代?  相似文献   
6.
Novoselov KS  Geim AK  Dubonos SV  Hill EW  Grigorieva IV 《Nature》2003,426(6968):812-816
The discrete nature of crystal lattices plays a role in virtually every material property. But it is only when the size of entities hosted by a crystal becomes comparable to the lattice period--as occurs for dislocations, vortices in superconductors and domain walls--that this discreteness is manifest explicitly. The associated phenomena are usually described in terms of a background Peierls 'atomic washboard' energy potential, which was first introduced for the case of dislocation motion in the 1940s. This concept has subsequently been invoked in many situations to describe certain features in the bulk behaviour of materials, but has to date eluded direct detection and experimental scrutiny at a microscopic level. Here we report observations of the motion of a single magnetic domain wall at the scale of the individual peaks and troughs of the atomic energy landscape. Our experiments reveal that domain walls can become trapped between crystalline planes, and that they propagate by distinct jumps that match the lattice periodicity. The jumps between valleys are found to involve unusual dynamics that shed light on the microscopic processes underlying domain-wall propagation. Such observations offer a means for probing experimentally the physics of topological defects in discrete lattices--a field rich in phenomena that have been subject to extensive theoretical study.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号